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ABSTRACT

The purpose of this paper is to evaluate a new operational procedure to produce half-hourly rainfall estimates
at 0.18 spatial resolution. Rainfall is estimated using a neural networks (NN)–based approach utilizing passive
microwave (PMW) and infrared satellite measurements. Several neural networks are tested, from multilayer
perceptron to adaptative resonance theory architectures. The NN analytical selection process is explained. Half-
hourly rain gauge data over Andalusia, Spain, are used for validation purposes. Several interpolation procedures
are tested to transform point to areal measurements, including the maximum entropy estimation method. Rainfall
estimations are also compared with Geostationary Operational Environmental Satellite precipitation index and
histogram-matching results. Half-hourly rainfall estimates give ;0.6 correlations with PMW data (;0.2 with
gauge), and average correlations of up to 0.7 and 0.6 are obtained for 0.58 and 0.18 monthly accumulated
estimates, respectively.

1. Introduction

The importance of rainfall estimation in weather fore-
casting, hydrological models, and hazard monitoring
and assessment is growing. Furthermore, rainfall mon-
itoring is also important for agriculture, fisheries, famine
early warning, pest monitoring, and erosion processes.
While some of these applications can use gauge obser-
vations, others such as weather forecasting need more
comprehensive coverage. In addition, there is a major
need for short-period estimates (Vicente et al. 1998).
Applications such as numerical forecasting require ap-
propriate and timely rainfall measurements for data as-
similation. Moreover, knowledge about rainfall pro-
cesses can also be increased if large-scale, more con-
tinuous rainfall series are available. Increasing spatial
resolution is also desirable for applications such as ag-
riculture (Herman et al. 1997) or hazard monitoring,
which require a resolution below the basin level. Im-
provements to hydrological model forecasts are possible
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with inputs that minimize sampling frequency errors.
However, these requirements are not completely met
using rain gauge stations alone and can only be real-
istically provided by spaceborne sensors.

Satellite rainfall retrievals have many advantages over
rain gauge–based measurements. The most obvious one
is the spatial coverage, especially over the oceans where
rainfall measurements are sparse. Temporal sampling
capabilities for large areas is also a major difference:
only timely satellite estimates permit the development
of real time or near-real-time applications. Satellite data
are also more homogeneous and objective than rain
gauge data.

However, current satellite rainfall retrievals are lim-
ited by two factors. First, passive microwave (PMW)-
based estimates suffer from poor temporal sampling and
coarse spatial resolution but determine rainfall more di-
rectly. Infrared (IR)-based sensors provide better tem-
poral resolution and moderate spatial resolution but de-
termine rainfall indirectly by inference from cloud-top
temperatures. Data fusion procedures aim to combine
both datasets to generate a product without their limi-
tations while reinforcing their strengths (e.g., Turk et
al. 1999; Marzano et al. 2002).
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Combined PMW and IR algorithms have been de-
veloped in the past, many of which represent devel-
opments of the Geostationary Operational Environmen-
tal Satellite (GOES) precipitation index (GPI). Adler et
al. (1993) developed the adjusted GPI (AGPI), in which
a correction factor is derived from comparison of PMW
and GPI estimates for coincident time slots over some
extended period (typically 1 month). This correction is
then retrospectively applied to all the GPI estimates dur-
ing that period. Kummerow and Giglio (1995) and Xu
et al. (1999) have subsequently developed more so-
phisticated approaches such as the universally adjusted
GPI (UAGPI) method, which is optimized using coin-
cident PMW and IR data, again over an extended period.
Anagnostou et al. (1999) show a PMW-calibrated IR
method for regional-scale applications while Todd et al.
(2001) present a new combined PMW and IR satellite
algorithm (MIRA) for estimation of rainfall at the small-
est possible space and time scales. It is based on the
assumption that PMW algorithms can provide accurate
estimates of instantaneous rain rates and that this in-
formation can be used to calibrate IR parameters to
improve rainfall estimates from IR data that are avail-
able at high temporal frequency.

This paper presents a neural networks (NN)–based
data fusion working procedure and tests its performance
through comparison with other more conventional tech-
niques such as the GOES precipitation index and a his-
togram-matching (HM) technique. The present method
differs from previous NN work such as proposed by
Sorooshian et al. (2000) and Bellerby et al. (2000) since
instantaneous rather than accumulated rainfall is the de-
sired product. Although validation procedures require
calculated monthly accumulated values, the goal is to
generate actual instantaneous (30 min) estimates at a
better spatial resolution than current techniques. The
study also uses PMW data from the Special Sensor Mi-
crowave Imager (SSM/I) rather than other tropical-ori-
ented sensors such as the precipitation radar (PR) of the
Tropical Rainfall Measuring Mission (TRMM) used in
most of the previous studies. Therefore almost global
coverage, including midlatitude areas where the most
accurate field validation data can be found, is available.

2. Data analysis

a. Background

1) SATELLITE RAINFALL RETRIEVALS

Two main approaches have been used to obtain sat-
ellite rainfall retrievals. Some review articles have an-
alyzed the capabilities and performance of visible/in-
frared (VIS/IR) algorithms (e.g., Levizzani et al. 2001).
However, there is only an indirect relationship between
cloud-top temperatures and actual rainfall. VIS/IR-
based algorithms seem to work best for large spatial
scales or long time series mainly because of a statistical
smoothing effect. Another reason is the relationship be-

tween cold-cloud duration and long-term measured rain-
fall for certain climatic typologies. Despite reasonably
good correlations, the physics of the rainfall retrieval
problem and the dynamics of the frontal systems are
overlooked altogether.

Conversely, PMW techniques provide more direct ob-
servation of the rainfall since it is the raindrops them-
selves that modify the upwelling radiation measured by
the satellite. Nonprecipitating clouds are almost trans-
parent at frequencies below 40 GHz, but at the same
wavelength hydrometeors interfere with the background
radiation. Since radiation scattering, absorption, and
emission are related to the size and number of raindrops,
a direct physical relationship—although complicated
and affected by several impairments—can be estab-
lished. However PMW techniques have poor spatial and
temporal resolutions limited by technical requirements
of the sensors and their low earth orbit (LEO) platforms.
Spatial resolution cannot be improved because of the
antenna diffraction limit related to the centimeter wave-
length of the radiation itself, and temporal resolution
can only be enhanced by using a constellation of sat-
ellites in low orbit. On the other hand, VIS/IR images
are available at higher spatial and temporal resolutions.
New sensors such as the new Meteosat Second-Gen-
eration (MSG) Spinning Enhanced Visible and Infrared
Imager (SEVIRI) will provide 15-min, 12-band mea-
surements with a resolution at subsatellite point varying
from 1.4 (high-resolution VIS) to 4.8 km (IR) (Schmetz
et al. 2002).

Data fusion approaches intend to take advantage of
the strengths of both data types while avoiding their
weaknesses as much as possible. The ultimate goal is
to find a more direct measurement of the rainfall than
that inferred from IR cloud-top brightness temperatures,
while providing a spatial resolution one order of mag-
nitude better than that of the PMW sensors at a much
better temporal sampling.

A complete discussion on the advantages and dis-
advantages of VIS/IR and PMW rainfall retrieval al-
gorithms can be found in Levizzani et al. (2001). PMW
algorithms are either statistical–empirical algorithms or
physical, radiative transfer equation–model based.
Whereas the ultimate goal of rainfall estimation might
be to propose a physical model, this task is hindered by
two facts. First, because climate is a time-dependent
phenomenon, changes must already be known to estab-
lish a deterministic physical model. Even more impor-
tant, the nonlinear behavior of the variables involved
prevents a deterministic modeling approach. Despite the
importance of microphysical studies some statistical as-
sumptions are required even for small-scale estimates
around 1 km. Note that considering statistical methods
versus deterministic ones does not mean lack of sci-
entific content. On the contrary, it can be argued that
when a large number of particles or variables are in-
volved, the statistical approach is the only viable meth-
odology. Jaynes’ arguments on statistical mechanics
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(Jaynes 1990) can be effectively applied to the problem
of rainfall estimation.

2) RETRIEVAL VALIDATION ISSUES

Results are validated over a Mediterranean region, a
climatic scenario substantially different from that of the
Tropics since neither the diurnal rainfall cycle nor the
precipitation processes are comparable, and the accu-
mulated rainfall amounts are completely different. The
lower rainfall rates in the Mediterranean as compared
with the convectively active Tropics imply less chance
to encompass errors through spatial or temporal aver-
aging. The general dominance of the frontal systems
over convective processes represents a challenge for
rainfall estimation since the ability to discriminate rain-
fall areas within satellite imagery is limited by the com-
plexity of the intermixed phenomena (convective and
stratiform) and the generally lower rain rates.

Monthly accumulated products are not necessarily su-
perior with respect to instantaneous estimates. On the
contrary, a loss of any intermediate data can result in
a very biased estimation. For example, while a couple
of lost satellite scenes does not represent a problem in
the high-rainfall areas of the intertropical convergence
zone (ITCZ), these could be precisely the images that
reveal the weekly rainfall in a given cell over a lower-
rainfall area in the Mediterranean basin. Consequently
validation data and satellite imagery used in the fusion
algorithms must be as continuous as possible.

A statistically based approach is used to fuse the
PMW and IR data so that the strengths of each individual
dataset are maintained and their weaknesses are at least
partially corrected for (cf. Marzano et al. 1999). The
use of gauge data was intended for the validation at
several temporal and spatial scales. However, caution
must be used while comparing these data. The large
spatial variability of the rainfall rates implies that areal
estimations from point measurements are difficult to es-
timate. Interpolation procedures always contain an un-
realistic smoothing effect, even if the least possible bias
is involved. Moreover, the relationship between rainfall
rate and rainfall duration makes it difficult to covert the
satellite instantaneous snapshots into accumulated 30-
min rainfall. Intensity–duration–frequency (IDF) curves
provide only a certain degree of accuracy and should
be applied to large time and spatial scales. Therefore
the bias associated with the 0–30-min transformation
must be considered when the quality of validation re-
sults is assessed.

b. Satellite data sources

1) PASSIVE MICROWAVE DATA

Based on the Electronically Scanning Microwave Ra-
diometer (ESMR) aboard Nimbus-5 and -6, spacecraft
that compose the Defense Meteorological Satellite Pro-

gram (DMSP) carry aboard the enhanced SSM/I system.
The first DMSP satellite (F8) with an SSM/I was
launched in 1987. The latest DMSP spacecraft (F15)
was launched in December 1999 and became operational
in February 2000. The SSM/I sensor measures the
earth’s microwave emission and has a near-circular, sun-
synchronous, near-polar orbit at an altitude of 860 km
with an inclination of 98.88 and an orbital period of 102
min. This provides complete coverage of the earth, ex-
cluding two 2.48 circular sectors centered on the Poles.
Spatial sampling resolution is 12.5 km pixel21 at 85
GHz and 25 km pixel21 at the lower frequencies. Cal-
ibration is done once each sensor scan (period 1.899 s)
with a cold (3.1 K) and a warm (300 K) target. SSM/I
data are obtained from the National Aeronautics and
Space Administration’s (NASA) Marshall Space Flight
Center (MSFC).

Many rainfall-rate retrieval algorithms have been pro-
posed (cf. Ferraro 1997; Smith et al. 1998). Here, a
frequency difference algorithm described in (Ebert
1996) is used. Its physical basis is that the 85-GHz
channel will be more greatly affected than the lower-
frequency, 19-GHz channel because of scattering from
precipitation-sized particles. Rain rates (RR) are gen-
erated through a lookup table derived from coincident
measurements with TRMM PR. This empirical method
aims to minimize the effects of surface temperature,
emissivity, and atmospheric effects. Vertical polariza-
tion channels are used over the ocean, with the hori-
zontal polarization used over land areas. Estimates over
coastal regions are produced by a polarization-corrected
temperature algorithm (see Kidd 1998).

2) INFRARED DATA

Since the VIS images cannot be properly used during
nighttime, only IR can provide a complete daily series.
Globally merged, full-resolution (;4 km), radiometri-
cally corrected IR data from the Climate Prediction Cen-
ter/National Centers for Environmental Prediction
(NCEP)/National Weather Service (NWS) are used.
These data are formed from the ;11-mm IR channels
aboard the Geostationary Meteorological Satellite-5
(GMS-5), GOES-8, GOES-10, Meteosat-7, and Meteo-
sat-5 geostationary satellites. Details are provided by
Janowiak et al. (2001). Global images are resampled to
0.0368 resolution for the area of interest. This merged
product and the location of the area in the Meteosat
domain ensures a valid image every 30 min.

c. Ancillary ground data

1) RAIN GAUGE DATA

Gauge data were provided by the 89 agro-meteoro-
logical stations of the European Union (EU) Regional
Government of Andalusia, Spain. Figure 1 shows the
validation area with the spatial distribution of rain gauge
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FIG. 1. Validation area showing the hydrographical net, political
boundaries, and the 89 gauge stations used for satellite validation.

data. Both the area covered (358–398N, 7.58–1.58W) and
the 30-min temporal sampling of the measurements are
deemed appropriate for validation purposes.

The interest in this region is twofold. First, the avail-
able data, which come from automatic stations, are qual-
ity controlled through preprocessing and comparison
with independent measurements from the national rain
gauge network. Complete station series may be omitted
if deemed unreliable, thus ensuring the best possible
reliability of the measured values. The second reason
of interest is the location of the region, allowing a dif-
ferent kind of comparison than those available from past
PMW validation campaigns such as TRMM’s, operating
in areas where the diurnal cycle is pronounced. The
Andalusia climate can be summarized as Mediterranean:
The average annual temperature is 16.88C, while rainfall
is 630 mm. However, the rainfall oscillation is pro-
nounced: from 200 to 2000 mm with very variable in-
stantaneous rainfall rates. From a physical point of view,
the region can be divided into three main sectors: 1) the
mountain areas including the Sierra Nevada (SE), with
elevations up to 3478 m, and the Sierra de Grazalema-
Ronda; 2) the Gualdalquivir river valley crossing the
region SW–NE, and 3) the plains in the east. Each of
these areas presents very different rainfall regimes with
peak rainfall amounts in the SE.

2) SPATIAL INTERPOLATION PROCEDURES

Several interpolation methods were applied to the
rain gauge point data to derive areal estimates. For
cumulative values several methods have been proposed
(e.g., Sivapalan and Blöschl 1998). Instantaneous val-
ues are usually estimated through interpolation pro-
cedures as described in a special issue of the Journal
of Geographic Information and Decision Analysis
(1998, Vol. 2, no. 1–2). Distance weight-averaged, bi-
linear and quadratic interpolation, various kriging

models, and maximum entropy interpolation are com-
pared in the search of the least-biased method, using
different grid intervals. Eventually, maximum entropy
interpolation method is used for 0.18 and 0.58 inter-
polations.

The maximum entropy method (MEM) was devel-
oped by Jaynes (Jaynes 1963, 1990). His Shannon’s-
based definition of information entropy (Shannon
1948) provides a criterion for setting up probability
distributions without spurious assumptions. Episte-
mologically, the MEM presents some advantages in
science, as has been reinforced by many researchers
(in particular Shore and Johnson 1980). This method
has been widely applied in physics, as when recon-
structing the major concepts of the classical statistical
mechanics from a purely Shannon information defi-
nition start. Several methods have been derived from
Jaynes’ ingenious findings and have been applied in
signal processing (Skilling and Bryan 1984), image
restoration (Noll 1997), and satellite imagery data fu-
sion (Tapiador and Casanova 2002). Christakos (1991)
presented a method to apply the formalism in geos-
patial interpolation. This procedure is followed here in
the Lee and Ellis (1997) development.

The MEM provides an objective procedure to find
the least-biased probabilistic distribution of a univar-
iate or multivariate random function. It can be dem-
onstrated that this distribution extracts the maximum
knowledge out of the problem (maximum entropy prin-
ciple). The formalism is as follows. The information
contained in a probabilistic distribution or random var-
iable R(x, y) is consistently measured by their entropy
function:

m n

S[R(x, y)] 5 2 R(x , y ) logR(x , y ). (1)O O i j i j
i51 j51

The MEM states that the most unbiased probabilistic
distribution yields from the maximization of S subject
to the set of r 1 1 constraints:

m n

R(x , y ) 5 1 and (2)1) O O i j
i51 j51

m n

R(x , y )g (x , y ) 5 c k 5 1, . . . , r,2) O O i j k i j k
i51 j51

(3)

where gk(x, y) are linear moments with respect to the
R(x, y) vector with expected values . We apply hereck

the discrete formalism without loss of generality. How-
ever, some discussion remains on the continuous for-
malism general-case theoretical base.

To maximize the entropy S subject to the constraints,
a variational approach is normally used, solving the
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system through Lagrangian multipliers. In its simplest,
nontrivial two-constraints form,

L[R(x, y), l , l ]1 2

m n

5 2 R(x , y ) logR(x , y )O O i j i j
i51 j51

m n

1 l R(x , y ) 2 1O O1 i j5 6[ ]i51 j51

m n

1 l R(x , y )g (x , y ) 2 c . (4)O O2 i j k i j 15 6[ ]i51 j51

Then solving (for x) yields

]L
5 2[logR(x ) 1 1] 1 l 1 l c 5 0. (5)i 1 2 1] f (x )i

This results in a nonlinear system of equations that must
be solved by numerical methods. Alternatively, a dual
problem can be defined minimizing the a posteriori un-
certainty through a maximum entropy estimate *. Afterz
some calculations, the necessary condition for a mini-
mum results

d log[R(z, x, y)]
5 0. (6))dz *z5z

Because the Shannon’s information function is convex,
this condition is also sufficient. In the general case, this
results in a set of equations that need to be solved
through numerical methods. Nevertheless, if the prior
information (the constraints) consists of the two first
moments of the distribution, the joint distribution char-
acterized by the maximum entropy principle is then
Gaussian, as was shown by Kapur and Kesavan (1992).
Thus

1
f (z, x, y) 5

n21 1/2[(2p) |S | ]

m n1 (x 2 m ) (y 2 m )i i j j3 exp 2 a (7)OO i j[ ]2 s si51 j51 i j

with S the covariance matrix and aij the ijth value of
the S21 matrix (Lee and Ellis 1997). This allows a prac-
tical implementation of the MEM. Equation (6) is then
solved, which yields

n2s [R(x , y ) 2 m ]1 i i iz* 5 m 2 a . (8)O1 i1a s si5111 1 i

This can then be calculated easily using a simple kriging
algorithm (Lee 1998). It can be proved that the second
moments are also equivalent. Empirical tests between
the actual calculation of the MEM and this approach
result in high correlation values (.0.99).

3. Fusion techniques

a. Neural network method

The NN nonparametric approach presents many ad-
vantages over other statistical procedures (Sarle 1994).
Hornik et al. (1989) have proved that multilayer per-
ceptron NN can approximate any measurable function
up to an arbitrary degree or accuracy. As a semipara-
metric regression estimator, NNs can model a nonlinear
function in a finite number of steps. Moreover, most of
the classification statistical procedures can be taken as
particular cases of NNs. This ability to extract nonlinear
relationships is a very valuable feature in remote sens-
ing. At least in theory, NNs can improve classification
accuracy by 10%–30% in comparison with conventional
classification methods (Carpenter et al. 1997).

Neural networks have been widely used in rainfall
estimation, and two main streams can be recognized.
First, there is the use of NNs within physical inversion
procedures using radiative transfer equations (e.g., Li
et al. 1997a,b). Other approaches analyze the problem
as a statistical one, as was done by Sorooshian et al.
(2000) when presenting a GOES-IR–TRMM Micro-
wave Imager (TMI) working procedure to generate daily
estimates with 18 3 18 resolution. Hsu et al. (1999) have
worked on approximating the statistical relationships
between VIS and IR data and rainfall. Correlations
above 0.7 can be generated for monthly totals at 0.58
3 0.58 using several approaches and models. Outliers
were in all cases reduced by accumulating samples both
spatially and temporally.

1) NEURAL NETWORK MODEL ANALYSIS

Several NN models were tested in the preliminary
stage of the present work. The selection of the model
was not a blind process but a conscious and analytical
quest. Following Anders and Korn (1999), a statistical
analysis was performed with the data in order to find
the most appropriate structure for the net through hy-
pothesis testing, information criteria, and cross-valida-
tion methods. In particular, the information criteria mod-
el selection was followed once the most appropriate
architecture was chosen, that is, a multilayer perceptron
(MLP) NN. Model selection can be guided by previous
statistical modeling, which provides a conscious NN
architecture selection. The procedure followed here was
to use the network information criterion (NIC; Murata
et al. 1994) with a previous transfer function linear
transformation through Taylor series expansion. NIC is
defined as

211 tr[BA ]
NIC 5 2 logL(ŵ) 1 (9)

n n

with A [ 2E[¹2 logLi], B [ E[= logLi= log ], n theL9i
number of observations, ŵ the set of parameters, = the
gradient, ¹2 the Hessian, and log L the estimated max-
imum log likelihood. This criterion is not justifiable,
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TABLE 1. Statistics for a pixel–pixel comparison (0.1 mm h21) for
the neural networks models evaluated using a sample image (1800
UTC 12 Oct 2001). Spatial resolution is 25 km.

Model R2 Avg Bias
MSE in
training

FF MLP
ART1
ART2
ARTMAP

0.95
0.23
0.32
0.25

23.44
12.37
11.43
16.72

4.12
23.34
56.12
12.98

0.018
0.018
0.030
0.027

Fuzzy ARTMAP
Distributed ARTMAP
Test image

0.42
0.37
1.00

12.12
20.43
22.53

32.17
22.23

–

0.012
0.005

–

however, for overparameterized nets whose limiting dis-
tributions are mixed Gaussian. However, a Taylor series
expansion of an additional hidden unit transfer function
reduces the hidden unit to linear terms and makes it
possible to use the NIC.

The method is as follows. First, the number of hidden
units is decided. Then, the Taylor expansion for the
additional unit and the principal components are cal-
culated and regressed with the residuals of the models.
The next step is to calculate the NIC, accepting the
additional component if it improves the overall perfor-
mances. In a second stage, this fully connected net is
pruned, extracting subsets and comparing with the NIC
estimator again. After this process, Monte Carlo sim-
ulations show that the results increase the classification
capabilities.

To determine the MLP choice, several models were
previously tested. Also, some adaptive resonance theory
(ART) nets (Carpenter et al. 1989) were tested because
of their fast learning ability. ART1 (adapted to the input
dataset), ART2, ARTMAP, distributed ARTMAP, and
fuzzy ARTMAP were generated, trained using the 1800
UTC 10 December 2001 SSM/I image and tested with
a different SSM/I–IR pair (0630 UTC 10 December
2001).

ART architectures develop the Grossberg (1969)
adaptative resonance theory. The idea behind this par-
adigm is to develop a procedure to solve the false en-
coding problem, using two fields of neurons. One F x

field acts as ‘‘sensorial cells’’ and the other F y acts as
‘‘high level’’ processing units. The inclusion of a ‘‘trig-
ger’’ ability to inhibit or disinhibit false patterns rep-
resents an improvement over the MLP approach, which
is unable to distinguish false patterns that are actually
used in the training process. ART nets present good
behavior in near-real-time processes. However, this fea-
ture is not the major reason for interest in using the
ART paradigm in rainfall data fusion—rather it is its
ability to identify spatial patterns. This was the primary
use of ART models in their original image processing–
related applications.

Because of the ART model sensitivity to the order in
which the data are presented to the net, a voting pro-
cedure is required. Carpenter et al. (1997) themselves
acknowledge the need for this additional feature in their
model when applied to remote sensing data. It is em-
pirically shown in this study that for one particular case
no less than 30 different arrangements were needed to
obtain any results.

Several approaches have been described to overcome
this problem (Carpenter et al. 1997; Dagher et al. 1999).
The algorithm suggested by Dagher et al. (1999) is ap-
plied to select the pattern order presentation within a
rational framework, reaching stationary values around
a large value of 1000 orderings, slowing down the learn-
ing process. Nevertheless, this procedure provides a ra-
tional, straightforward, easy-to-compute method to pre-
sent the patterns to the net in the training phase. The

algorithm consists of four stages. First, for each training
pattern x 5 (x1, . . . , xk, xk11, . . . , xn),

k

G 5 |x 2 x | (10)O k1i i
i51

is computed. Second, the training pattern that maximizes
Eq. (10) (say x0) to the NN is presented, and then x0 is
removed from the training data. The next c patterns are
chosen as follows. The Euclidean distance between x0

and the training patterns is calculated, and the minimum
xj is selected. This is iterated using x0 5 xj until j 5 c,
where c is the number of classes desired plus one. This
generates a set of c Ic cluster centers, whose maximum
value is computed. The corresponding training pattern
is the next to be presented to the net. Once used, the
pattern is removed and the calculation of the cluster
centers step iterates.

The third stage consists of the selection for the next
n 2 c parameters computing the Euclidean distance of
the remaining patterns to the cluster centers and se-
lecting the minimum of these distance patterns as the
next input. Then, the pattern is removed and the process
iterated until all the input patterns have been used.

It can be proved that the generated ordering is in-
dependent of the one associated with the original train-
ing set (Dagher et al. 1999). Experimental work of the
authors also proves that the generalization performance
is increased. Table 1 shows the results of this selection
process. Note that, despite good behavior in the training
phase, ART models fail when applied to new patterns.

2) ARCHITECTURE SELECTION

The chosen architecture is a simple MLP feed-for-
ward model with 11 input neurons, 23 and 7 units in
two hidden layers, and a unique output neuron. From a
mathematical point of view it has been argued that no
more than two hidden layers are required for any kind
of data, and only one if the function to be modeled is
revealed as continuous (Cybenko 1989). However, prac-
tical issues such as training speed can suggest other
decisions. In this study, after the model selection an
empirical test confirms that no further improvement was
obtained by increasing the number of hidden layers.
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TABLE 2. Inputs used for the neural network model.

Inputs Notation Description

1–6 Tb at t0,. . .,t5 Brightness temperature of the pixel for the current IR image (t0) and the
previous five images

7 Tb (3 3 3) Mean value over a 5 by 5 pixel neighborhood of the current IR image
8 Tb (5 3 5) Mean value over a 3 by 3 pixel neighborhood of the current IR
9 =Tb (3 3 3) Standard deviation of pixel value over the 3 by 3 pixel neighborhood

image
10 =Tb (5 3 5) Standard deviation of pixel value over the 5 by 5 pixel neighborhood
11 #(Tb , 225) Number of pixels of current IR image with a brightness temperature less

then 225 K

Sigmoidal functions are used in all the neurons but with
different parameterizations. Also, a binary output in 100
classes has proved to be worse than the chosen one for
increasing the efficiency of the net.

3) INPUTS SELECTION

The inputs of the net have been selected bearing in
mind the precipitation processes in the area of study.
Only the IR band was used, enabling generation of day-
time and nighttime estimates: further research must be
done using more IR bands to help in identifying cirrus,
cloud, fog, and mist, which are sometimes mistaken for
rain areas.

The first six inputs consist of the current and the five
previous brightness temperature values for a particular
pixel. This is expected to model not only the convective
and orographic processes but also the frontal ones in
the southern Mediterranean area. Each rainfall process
generates a very different signature or sequence of dig-
ital numbers in the same pixel, but it was expected that
the training process would be able to recognize them
when associated with a certain amount of rain and ad-
ditional spatial information. The next two inputs are the
average over a 3 3 3 and 5 3 5 neighborhood of the
pixel. This minimizes the geolocation and synchrony
problems of both datasets. Second, it provides valuable
texture information about the cloud cover (Bellerby et
al. 2000). Standard deviations of the current value with
the 3 3 3 and 5 3 5 windows were taken as the next
two inputs. Last, the number of pixels whose associated
temperature is lower than 225 K in the 3 3 3 slot was
also included. This value is intended to provide infor-
mation about the heaviest rain areas. A previous em-
pirical test showed that the 225-K threshold was more
appropriate to this area than the more usual 235-K value
recommended in the literature. This variability of the
threshold has been pointed out by several authors. Todd
et al. (1995) and Todd and Washington (1999) showed
that optimum IR threshold values (calculated by com-
parison with rain gauges) over East Africa are highly
variable in time and space, as a result in local-scale
rainfall/cloud characteristics. Such optimized IR thresh-
old fields were shown to identify rainfall events more
accurately than a fixed 235-K threshold. Xu et al. (1999)
also demonstrated the value of local calibration of IR

thresholds (using PMW satellite on a monthly basis)
over the Japanese islands.

The time of the day input was considered as invalid
early, since the NN can become coupled with the value
itself. The reasonable performances of models using this
input can be attributable to strong daily rainfall cycles
such as in the Tropics where the net could learn the
daily convective succession oblivious of the other in-
puts. Table 2 summarizes the inputs used. The output
corresponds to the estimated SSM/I instantaneous rain-
fall rate (in tenths of millimeters). All absolute values
were normalized to [0, 1].

4) OPERATIVE DATA PROCESSING

The procedure followed to generate the 30-min es-
timates is to train the net with every valid SSM/I over-
pass. The temporal sampling of these satellites allows
typically twice-daily imagery of the area under study.
This means that at least two nets are generated, trained,
and applied each day, but because of the region’s climate
this produces various scenarios. In this Mediterranean
area, only a single coincident image containing a rainfall
pair is usually found over a long period of time. In this
case, the closest nets are used to generate the estimates.
This represents an additional uncertainty that is reflected
in the final results.

The learning rates in the training phase were set to
0.1 for the first 10 000 iterations and to 0.05 for the
next 10 000. Several selected cases showed that the
mean-square error (MSE) of the net was always less
than 0.002 within the 20 000-iterations limit. An in-
dependent validation dataset was also employed to en-
sure the generalization properties of the trained net. The
overtraining effect was avoided by using these comple-
mentary data.

5) INVERSION PROCEDURE

An inversion procedure was followed to analyze the
influence of the inputs on the final result. Input selection
cannot be parameterized in the same way as the NN
model is. The physics of the problem relies on a rational
choice of the factors that can have an a priori relation-
ship with the instantaneous rainfall rate. Nevertheless,
once the net is trained some algorithms have been pro-
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posed to uncover the almost black-box procedure that
the training process represents. The NN inversion pro-
cedures seek to find one or more input values that pro-
duce a desired output response for a fixed set of synaptic
weights (Jensen et al. 1999). The basic idea is to analyze
the kind of input vector that generates a specific output.
This could be useful both for the input selection process
and for the analysis of the process being modeled.

The inversion of neural networks seeks to find the input
vector that corresponds with a desired output. Once the
training dynamic process has been completed, an NN is
nothing but a matrix of weights that best fits the inputs
to the outputs. If we consider an NN as a function f that
gives a desired output y from some inputs x,

H I

h ihy 5 f (x, W) 5 w g w x , (11)O Oi j i1 2i51 j50

where H and I denote the hidden and input layers, re-
spectively, and g is the transfer function. Once the NN
has been trained, the matrix W becomes fixed. To re-
trieve an estimated input from a given output o*, a cost
error function must be minimized:

amine(x) 5 [ f (x, W) 2 o*] . (12)

In general, the solution is a set of k-uple on hypersur-
faces, so that there are many solutions to a given output.
In some NN applications this can be a problem, but in
our case this is in agreement with our hypotheses on
rainfall processes.

Several approaches have been proposed to solve the
optimization problem. Here the Williams (1986) and
Linden and Kindermann (1989) (WLK) method has
been used. This method uses the gradient descent as
does the back-propagation algorithm (Linderman and
Linden 1990). Given an initial x, values are updated
following

]e
i11 ix 5 x 2 h , (13)k k i]xk

where h is the back-propagation learning rate parameter,
i is the iteration, xk is the kth component of x, and e is
the error function. To the described net, we solve in
reverse order

]e
5 d , (14)ji]xk

where the derivative delta d j is

d 5 C(o )(o 2 o*)j j j j (15)

if the neuron belongs to the output layer O, and

d 5 C(o ) d w (16)Oj j j j,m
j∈H,O

if it belongs to the input layer I or the hidden one H.
In this work, a previous, more complex model was

built, containing two more IR images, the 3 3 3 and 5
3 5 averages, and standard deviations for the eight IR

images and the coldest pixels in the 5 3 5 window. The
inversion procedures demonstrated the redundancy of
these inputs in this particular case. Moreover, the 5 3
5 windows were interpreted as a source of noise in the
training phase for a problem in which contradictory ex-
emplars are common. Note that despite the high cor-
relation between the 3 3 3 and 5 3 5 t0 inputs (Table
3), these were judged necessary by the inversion al-
gorithm.

A good example of the difficulties in rainfall merging
techniques and the utility of using NN is the correlation
estimation by using some models. As can be seen in
Table 4, none of the analyzed models are capable of
offering any significant correlation between the IR-de-
rived inputs and rainfall measured by the SSM/I.

b. Histogram-matching technique description

The histogram-matching technique (Crosson et al.
1996) establishes a relationship between the probability
density function (pdf ) of the PMW rain rate and the IR
brightness temperatures. The PMW rain-rate pdf is
matched by accumulating the IR starting from the warm
end and generating a series of matched pairs. After pro-
cessing the past statistics as described, the time update
cycle writes out a file that contains a lookup table for
each selected box, which relates the IR temperature to
the PMW rain rate. This file is then used to match the
histograms of the following images, providing the rain-
fall rates. Figure 2 illustrates the procedure followed to
generate the estimates using all the described proce-
dures.

Before discussing the results obtained by applying
the data fusion techniques to the proposed case study,
we briefly recall the conventional IR technique used so
far to estimate rainfall from space. We will use this
algorithm for comparison with the proposed NN meth-
od.

c. GOES precipitation index algorithm

The GPI algorithm was first proposed using radar and
satellite data collected during the Global Atmospheric
Research Program Atlantic Tropical Experiment (Rich-
ards and Arkin 1981). It uses a fixed 235-K threshold
temperature to distinguish between rain and no-rain pix-
els. First, the ratio between cloud pixels whose asso-
ciated temperature is lower than 235 K and the number
of total pixels in a given grid square is calculated. A
constant rain rate (3 mm hr21) is then applied to the
fraction of cold cloud to estimate the instantaneous rain-
fall, which can be then accumulated to monthly esti-
mates. The rationale behind the method is to exploit the
average relationship between low-temperature cloud-top
pixels and rainfall. However, there is no direct rela-
tionship for any given pixel at any given time. The
mismatch between cloud-top temperature and rainfall at
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cloud base is partially corrected when large areas and
time scales are considered.

4. Results and discussion

The results of the NN and histogram-matching tech-
niques applied to a case study are shown in Fig. 3. The
rain retrieval obtained applying the method described
before on the SSM/I image was used together with the
current and five previous IR images to generate the NN
fusion retrieval. The HM estimate was created following
the lookup table method and then has been resampled
to the IR resolution. Since the GPI method can only
provide binary rain–no-rain this not been mapped. The
NN result clearly reflects better the SSM/I estimation
so that, if the one obtained using only SSM/I is taken
as an adequate rain-rate retrieval, the NN method seem
to qualitatively improve over the HM rainfall estima-
tion. The scatterplot of 30-min instantaneous estimates
over an entire month (Fig. 4) demonstrates how depen-
dent the HM and NN estimates are on the original PMW
source, as expected. While the comparison with gauges
leads to poorer correlations, the NN estimates appear to
be related to the PMW measurements. Figure 4 also
delimits the typical correlation values that can be ex-
pected from gauge–HM/NN comparison when a month
of 30-min instantaneous data is chosen. By comparing
these results with the 0.58, 3-month accumulated values
(in Fig. 10), the effects of spatial and temporal accu-
mulation become apparent.

Figure 5 shows the relationship between the NN es-
timate and the SSM/I retrieval for a single case over
the selected area. While the correlation coefficient of
the SSM/I versus gauge data is similar to the earlier
example, the advantage of the NN is that an estimate
can be calculated every 30 min. The HM method is a
straightforward, easy-to-calculate procedure that gen-
erates as good results for accumulated values as the GPI
but generally performs worse than gauges when applied
to instantaneous rainfall rates: correlation values of 0.19
against gauge (not shown) are far away from the cor-
relation of 0.55 that the NN method provides (Fig. 5).
An additional feature of the NN procedure is the in-
crease in the spatial resolution of the retrieval in com-
parison with the IR resolution.

In principle, intercomparisons between different sat-
ellite-based procedures are subject to criticism as a
unique validation method of assessment. For example,
high correlations between the TRMM PR or ground
radar and PMW cannot be taken as an absolute mea-
surement of quality since both procedures are based on
similar physical principles. Moreover, even if one of the
comparison terms presents high correlation rates with
the real rainfall values, transitivity cannot be applied:
typically, high-confidence correlation values such as a
0.80 would yield a joint correlation of 0.64, not hard
to achieve through Monte Carlo simulation. This would
mean that independent ground-based measurements are
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TABLE 4. Correlations of some classical models when comparing the Tb of the infrared image with interpolated gauge data (0.58
resolution) from Oct to Dec 2001.

Input Method* R2 F Sig f Bound a0 a1 a2

Tb at t0 LIN
QUA
CUB
COM

0.09
0.119
0.137
0.096

636.72
433.44
340.69
685.53

0
0
0
0

0.4145
0.4179
0.4201
0.4053

20.3855
20.834
21.4755

0.363

1.2534
5.6351 25.9588

GRO
EXP
LGS

0.096
0.096
0.093

685.53
685.53
655

0
0
0

20.9032
0.4053
1

21.0134
21.0134

1.4295 5.2305

* LIN 5 linear ; QUA 5 quadratic; CUB 5 cubic; COM 5 composite; GRO 5 grown; EXP 5 exponential; LGS 5 logistic.

required. On the other hand, checking against ground
rain gauge measurements is not an absolute guarantee
since gauge measurements have their own significant
intrinsic uncertainties that have never been properly
quantified (Smith et al. 1998).

A quantitative assessment of the results is conducted
by comparing rain gauge measurements with instanta-
neous, daily, and monthly satellite retrievals based on
fusion techniques. Several indices have been proposed
for validation since Pearson’s correlation does not prop-
erly reflect the performances of the satellite rainfall es-
timation methods. A review of some of the procedures
is given by Cheng et al. (1993). The philosophy behind
these indexes is to evaluate the method’s ability to dis-
criminate the rain boundary. Four measurements are
produced that compare satellite estimate with rain
gauge: rain–rain success (RR), rain/no-rain (RnR) er-
rors, no-rain/rain (nRR) errors, and no-rain/no-rain
(nRnR) agreement. With these four values, some indices
can be generated:

PER (% error in the diagnosed area),

nR 2 RnR
PER 5 3 100; (17)

nR 1 RR

POD (probability of detection),

RR
POD 5 ; (18)

RR 1 nRR

FAR (false-alarm ratio),

RnR
FAR 5 ; (19)

RnR 1 RR

LFF (loss function F ),i

RnR nRR
LFF 5 1 ; (20)

RnR 1 RR nRR 1 nRnR

AWES (area-weighted error score),

RnR nRR
AWES 5 1 ; and (21)

RnR 1 nRR nRR 1 RR

SS (skill score),

RR 1 nRnR 2 k
SS 5 , (22)

RR 1 nRR 1 RnR 1 nRnR 2 k

where

[(RR 1 nRR)(RR 1 RnR) 1 (RnR 1 nRnR)(nRR 1 nRnR)]
k 5 . (23)

RR 1 nRR 1 RnR 1 nRnR

The meaning of most indexes can be derived easily from
their arithmetical formulation. The skill score (SS) is
particularly valuable since it relates the number of cor-
rect diagnoses with the expected correct number due to
chance. It is also useful to notice that the results of all
these indices are not related with the rainfall rate but
with the rain/no-rain discrimination.

Table 5 shows the October and November 2001 sta-
tistics for the GPI, NN, and HM methods for 30-min
estimates. The heading ‘‘% OCC’’ stands for percentage
of occurrence, calculated as the percentage of the sat-
ellite estimate divided by the gauge measurement. No-
tice that gauge measurements are not interpolated in this

case, but are used as point estimates. In general, the
results are poor as can be expected for almost instan-
taneous, noninterpolated estimates. However, the indi-
ces support the idea that, in term of scores, the NN
method is at least comparable to the HM and PMW
estimation procedures. Unsurprising, the binary thresh-
old of the GPI works well in delimitating the rainfall
boundaries and even the rainfall amount but cannot be
considered as a realistic estimate for these short-term,
high-resolution scales.

Another method of evaluating the performances of
the estimates is by comparing their histograms. Figure
6 shows a monthly histogram for coincident points.
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FIG. 2. Flow diagram of the processes followed to generate the
rainfall rates using the GPI, HM, and NN methods from satellite
information.

The NN estimates seem to improve in this case the
results over the other methods: the NN histogram
closely follows the gauge one, while the HM and PMW
lines present more differences with the gauge reference
value.

The real added value of the fusion procedures is to
provide a PMW-based rainfall estimate when only IR
information is available as illustrated in Fig. 7. Using
a single image to calibrate the NN, the whole temporal
evolution of the rainfall system can be followed at the
IR spatial resolution. The spatial and temporal reso-
lutions of the NN results allow the analysis of the life
cycle of rainfall systems to a scale as small as permitted
by the IR image resolution. The typical development
of a front and small convective cells can be tracked at
30-min intervals. This has proved to be useful, both
for case study analysis and for agricultural and hydro-
logical applications. A forthcoming application of this
method to MSG images will generate ;5 km, 15-min
rainfall estimation at the geostationary scale. It is, how-
ever, debatable whether these estimates reflect the real
behavior of the rain fields (cf. Fig. 8). Nevertheless,
since it is widely accepted that PMW sensors provide
the most direct estimates of global rainfall currently
available (e.g., Todd et al. 2001) the effectiveness of
the NN method both at instantaneous and accumulated
time scales depends ultimately on the SSM/I estimate.
Once it is accepted that the SSM/I sensors accurately
measure the rainfall, our results show that the fused
NN method is able to simulate correctly the PMW es-
timate.

The time series of rainfall events (Fig. 8) shows how
sparse the PMW estimates are compared with the fused
HM and NN methods. This improvement in the temporal
resolution is the main advantage of the NN approach
over the direct PMW measurements since the scores of
these methods are somehow similar (see Table 5). On
the other hand, the main advantage over the HM is the

increase in the spatial resolution, since the NN is able
to weight the IR contributions to a single PMW pixel,
thus generating subpixel rainfall estimates. Therefore,
using IR imagery makes it possible to extend the PMW
capabilities avoiding to some extent the snapshot char-
acter of the SSM/I observations while also increasing
the spatial resolution. However, the estimates are by the
nature of the NN training data, representative of a mi-
crowave gridbox-sized area average.

Figure 8 plots 30-min series over a complete day for
four locations across Andalusia. Although the three
methods reflect to some extent the temporal variations,
the absolute values are not accurately estimated. Some
authors (Bellerby et al. 2000) have reported similar
conclusions that may be due to problems affecting the
SSM/I rainfall estimation. First, the SSM/I scan can
only provide snapshot observations of the actual
weather system that will be eventually transformed into
rainfall rates. However, rainfall inhomogeneities are
well known and it is possible that a station recording
no rain during the SSM/I overpass may measure a high-
rainfall amount a few minutes later. Careful choice of
gauge locations in places representative of the neigh-
boring area would not be enough to solve this problem.
Some ‘‘delay’’ effects in Fig. 8 could be attributable
to this effect. Another even more important problem
is that SSM/I retrieves the integral rainfall along the
entire atmospheric column while the gauge only mea-
sures surface rainfall. Evaporating rainfall could be one
of the reasons of the overestimation that is identifiable
in Fig. 5. The scores (Table 5) are also affected as the
no-rain/rain score increases. Needless to say that the
correct quantitative assessment of this water amount is
crucial for meteorological and forecasting purposes.
New strategies are currently being conceived to ade-
quately address the calibration–validation issue for sat-
ellite rainfall algorithms. These strategies have to go
a step ahead in facing the problems of the microphysics
of the rain processes together with the answers to be
given to the end users for the assimilation of rain rates
into weather, climate, and hydrological prediction
models (Smith et al. 2002). Nonetheless, validation
procedures by means of independent ground-based
measurements will continue to be needed, if nothing
else as a basis for research on new validation meth-
odologies.

This leads us to suggest that rainfall gauge mea-
surements are probably not the optimum way to vali-
date instantaneous SSM/I estimates in so far that they
measure different parameters related with rainfall. The
30-min gauge integration time would be too large to
take account of the earlier-mentioned effects. However,
their effects may be mitigated to a certain extent by
area and time accumulations allowing for a quantitative
validation of the estimates.

In order to demonstrate the expected improvement
when dealing with accumulated values, we compared
the NN estimates with the gauge measurements. The
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FIG. 3. Single-image comparison between resampled 0.18 rain retrieval from (top) the SSM/I using PCT
(Kidd 1998), (middle) ;0.058 NN estimate, and (bottom) 0.18 HM estimate. Time/date is 1800 UTC 12 Oct
2001.
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FIG. 5. Scatterplots for a 30-min interval instantaneous retrieval
against gauge measurements over the selected area (1800 UTC 12
Oct 2001): (a) SSM/I vs gauge estimates, (b) NN vs gauge estimate,
and (c) NN vs SSM/I retrievals. Straight lines represent the linear
regressions.

maximum entropy method was used to interpolate the
gauge stations measurements to 0.18 3 0.18 and 0.58 3
0.58 boxes providing areal estimates, as discussed
above. Figure 9 shows that the correlation coefficient
improves for a 0.18 3 0.18 resampling area, a large
number (October 2001) of 30-min estimations, and a
selection of those gauge locations with at least one
PMW value during the period. Moreover, if the subset
of those cells that contain more than four gauge stations
is selected and the resolution reduced to 0.58 3 0.58,
the R2 value increases notably (Fig. 10). As expected,
the downscaling of the whole dataset to 0.58 3 0.58

cells also increases the correlation as shown in Fig. 11.
This is in accordance with similar values reported in the
literature for accumulated values using different meth-
ods of those shown here, but it is worth noting that the
original values and correlations are only truly repre-
sented in Fig. 4. Using no artifices to encompass the
biases, current satellite rainfall estimates can only pro-
vide limited accuracies for short time and spatial scales.
Turk et al. (2002) have demonstrated how a reliable
methodology can provide 0.8 R2 values for 2.58 3 2.58,
monthly estimates and apparently poor values such as
0.tbR2 for 0.28 3 0.28, 90-min estimates. In that work
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FIG. 6. Histogram of monthly estimation (Oct 2001) for coincident
gauge data, PMW measurement, and HM and NN estimations.

correlations of 0.6 can be achieved by coarsening the
spatial resolution to 1.58 3 1.58 over a 3-h analysis,
which gives an idea of the variations in the results that
can be expected.

5. Conclusions

Rainfall at midlatitudes is spatially and temporally
very different from tropical rainfall. Processes that favor
rainfall estimates such as the daily cycle are substituted
by more complex mechanisms that are not easy to mod-
el. This represents a challenge both to rainfall estimation
and to the validation of the results.

Instantaneous rainfall retrieval through PMW sensors
presents many advantages over the IR-based techniques
or over gauges, but disadvantages such as the temporal
sampling and the spatial resolution must be also con-
sidered. Data fusion and merging approaches using IR
information are capable of mitigating these drawbacks
without removing the physically based rainfall discrim-
ination they provide. Some methods, such as the NNs
even improve the results of the PMW sensors them-
selves in terms of spatial resolution.

Validation procedures based on spatial interpolation
generate smooth surfaces that encompass the patchy na-
ture of rain and the satellite update time. Time-accu-
mulated values deal with the latter issue and also with
the climatic temporal series convergence property for
large values. Despite the problems, accumulated values
are valuable for intercomparison purposes.

A neural network–based PMW–IR satellite merging
method relies upon the careful design of the net, which
is based on the nature of the data and provides a re-
peatable, analytical, objective process. The resulting net
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FIG. 7. Example of instantaneous NN-derived rainfall evolution. The neural net was trained once at 1800 UTC (left, second row) and
then applied forward and backward to generate the estimates using IR information only.



592 VOLUME 43J O U R N A L O F A P P L I E D M E T E O R O L O G Y

FIG. 8. Time series of instantaneous rainfall estimations for four different gauge point locations randomly selected (and unspecified).

FIG. 9. Scatterplot comparison between instantaneous rainfall es-
timation using the NN method and gauge measurements at 0.18 3
0.18 during the best case analysis (Oct 2001) for coincident PMW
points.

has been compared with other models and paradigms,
proving comparable performances in terms of rain de-
limitation scores and an increase in the temporal and
spatial resolutions. Its rainfall retrieval capabilities have
been tested against GPI, HM, and gauge data—improv-
ing the temporal resolution of the PMW estimates and
providing reasonable discrimination capabilities. Av-
erage correlation values of 0.6 for 0.18 3 0.18 and 0.7
for 0.58 3 0.58 monthly accumulated values are ob-
tained, with possible correlation values of up to 0.8 for
those areas that participate in the training process. The
temporal rainfall variability over a location is recog-
nized by the NN as the life cycle of the rainfall processes
too. Further advances are expected from ongoing work
on the subject. The forthcoming use of MSG images
could improve the match between IR and PMW images,
and instantaneous validation procedures are being de-
veloped to avoid the snapshot effect of the SSM/I im-
agery and to establish a relationship between its esti-
mations and time series accumulated values.

However, a huge advance on rainfall estimates can
only be expected if the PMW measurement technology
improves. Combined, fused algorithms ultimately rely
on the PMW discrimination capacity and on the IR tem-
poral sampling and spatial definition capabilities. The
IR information such as those provided by the MSG
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FIG. 10. Scatterplot comparison between point estimates at 0.58 3
0.58 resolution and the NN results restricted to cells with more than
four gauge stations.

FIG. 11. Scatterplot comparison between measured accumulated
rainfall during Oct, Nov, and Dec 2001 at 0.58 3 0.58 resolution and
the NN performances.

channels are ready to offer reasonable performances at
these wavelengths. While it is clear that the PMW ap-
proach is the best paradigm to generate accurate rainfall
estimates, technical problems remain. The Algorithm
Intercomparison Projects (AIP) (Smith et al. 1998) and
many research papers have identified limitations that
future PMW-based missions need to address if a great
advance in rainfall estimation is to result. High corre-
lations of satellite rainfall estimates are linked with a
selection of spatially interpolated (typically at 0.58) and
temporal accumulated values (typically monthly). Less
than 18 resolution and hourly estimates currently provide
very low correlations and can only be enhanced by im-
proving the PMW capabilities since combined, fused

methodologies’ performances are linked with this es-
sential source of rainfall information.
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