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Abstract—Understanding the lunar physical properties has
been attracting the interest of scientists for many years. This paper
is devoted to a numerical study on the capability of retrieving the
thickness of the first layer of regolith as well as the temperature
profile behavior from satellite-based multifrequency radiometers
at frequencies ranging from 1 to 24 GHz. To this purpose, a for-
ward thermal–electromagnetic numerical model, able to simulate
the response of the lunar material in terms of upward brightness
temperature (TB), has been used. The input parameters of the
forward model have been set after a detailed investigation of the
scientific literature and available measurements. Different choices
of input parameters are possible, and their selection is carefully
discussed. By exploiting a Monte Carlo approach to generate
a synthetic data set of forward-model simulations, a physically
based inversion methodology has been developed using a neural
network technique. The latter has been designed to perform, from
multifrequency TB’s, the temperature estimation at the lunar
surface, the discrimination of the subsurface material type, and
the estimate of the near-surface regolith thickness. Results indicate
that, within the simplified scenarios obtained by interposing strata
of rock, ice, and regolith, the probability of detection of the
presence of discontinuities beneath the lunar crust is on the order
of 84%. The estimation uncertainty of the near-surface regolith
thickness estimation ranges from 11 to 81 cm, whereas for the
surface temperature, its estimation uncertainty ranges from about
1.5 K to 3 K, conditioned to the choice of radiometric frequencies
and noise levels.
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I. INTRODUCTION

IN RECENT YEARS, a relevant number of space missions
have been devoted to the study of the Moon. This renewed

interest for Moon explorations is motivated by several aspects:
1) the need to find new extraterrestrial resources for sustaining
the human activity on the Earth and 2) the opportunity to exploit
the Moon as a springboard toward deep space explorations (i.e.,
toward Mars) [1]. Even though many governments have been
reducing funds to their space agencies, some relevant lunar
mission has been launched and successfully ended.

Among others, the following missions are worth mentioning:
1) the Lunar Crater Observation and Sensing Satellite [4],
aimed at confirming the presence or absence of water ice in
a permanently shadowed crater at the Moon’s South Pole by
observing the plume of debris caused by the impact of a space
module on the lunar surface; 2) the Lunar Reconnaissance
Orbiter [3], devoted to find safe landing sites, to locate potential
resources, to characterize the radiation environment, and to
demonstrate new technology such as infrared radiometry and
S-band mini synthetic aperture radar; and 3) the Chang E-1
mission [9], [14] which, for the first time, observed the Moon
by means of a microwave radiometer. Within this context, in
2006, the European Space Agency approved the feasibility
study of the European Student Moon Orbiter (ESMO) mission
[17]. In order to accomplish the ESMO mission objectives, a
MicroWave Radiometric Sounder (MiWaRS) was selected as
a possible payload for flying on board of the ESMO satellite.
At the current stage, the ESMO mission is dealing with its so-
called phase B.

The appealing feature of the satellite microwave radiometric
observation of the Moon is its capability to sound surface and
subsurface thermal structure and, to some extent, morphology
[6], [10], [12]. A physically based retrieval approach requires
a forward model to simulate the microwave radiometer re-
sponse from space. Several approaches have been proposed and
adopted so far with a variable degree of complexity [6], [12].
Within the ESMO MiWaRS feasibility study, a detailed forward
numerical model has been developed. This radiative transfer
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(RT) model couples a thermal and an electromagnetic (EM)
module to simulate the MiWaRS observed brightness temper-
atures (TB’s) due to a thermally and dielectrically stratified
lunar medium [2], [5], [13].

The estimation of the lunar regolith thickness by using
satellite microwave radiometers is of uppermost interest [1].
Recent results about regolith thickness inversion evidence a
good agreement with expected values [9]. The accuracy and the
reliability of these results depend both on the choice of the input
parameters of the Moon emission forward model and on the
accuracy and flexibility associated to the measuring instrument.
Despite the recent efforts in the lunar surface and subsurface
temperature retrievals by lunar satellite microwave radiometry
[21], [22], an effective algorithm capable to discriminate among
various subsurface patterns is still an open issue. Indeed, the
microwave radiometric estimation of the surface temperature is
characterized by a relatively large spatial footprint if compared
with similar instrument operating at infrared, but its knowledge
supports the accurate retrieval of other lunar parameters.

This paper is devoted to a numerical study on the inverse
problem, dealing with the retrieval of subsurface features of
the Moon stratigraphy from satellite-based measurements of
TB’s which would be observed by multifrequency radiometers
such as MiWaRS. To this aim, a Monte Carlo simulation data
set of TB’s for different stratigraphy scenarios has been set
up using the microwave radiometric multilayer forward model,
previously developed in [2]. Several possible MiWaRS inverse
products have been examined together with their expected
accuracy: 1) the detection of discontinuities beneath the lunar
crust; 2) the estimation of the thickness of the regolith layer;
and 3) the estimation of the lunar near-surface temperature
[7], [9], [22]. Since the inversion algorithms exploit the a
priori knowledge of a forward model, the accuracy of MiWaRS
products is highly dependent on the modeling choices about
the physical and electrical properties of the lunar material. This
is a crucial aspect which is thoroughly discussed in this paper
through comparisons with available measurements from Apollo
missions [6].

This paper is organized as follows. Section II introduces the
key aspects of the adopted forward RT model with special
attention to the choices related to the input physical param-
eters, needed to characterize the lunar material. Section III
describes the inversion model approaches, based on the neural
network (NN) tool, used to carry out the retrievals of the Moon
characteristics. Section IV shows the results of the performed
inversions, whereas in Section IV, conclusions are drawn.

II. FORWARD MODEL

In order to simulate the microwave radiation emitted by the
Moon in terms of azimuthally isotropic brightness temperature,
TB, the RT problem has been solved using an incoherent
approach [16].

A. Description

The lunar subsurface has been assumed to be vertically
stratified with a set of 501 plane-parallel homogeneous layers
up to 5-m depth with negligible multiple scattering effects. This

is a very common simplification, frequently used in past and
recent works [9], [10], [21], for simulating Moon scenarios. It
is worth to mention that, with respect to past works, where three
homogeneous layers of regolith, rock, and substratum are con-
sidered, the adopted RT forward model uses a finer discretiza-
tion allowing us to describe more accurately the variations of
temperature and permittivity along the vertical structure of the
Moon stratigraphy. Thus, the RT model here uses two distinct
schemes: a nonlinear thermal model (TM) and a plane-parallel
EM model. The temperature profiles are obtained by solving the
nonlinear thermal transfer equation after defining the density,
the specific heat, and the thermal conductivity along the vertical
profile of the lunar material [4], [5]. The EM solution, on
the other hand, is based on an incoherent approach where
the interaction between the upwelling and the downwelling
radiation contribution from each layer is taken into account for
modeling the resulting TB from the upper layer at the surface
level [2], [15]. The EM solution is obtained after modeling the
complex permittivity (ε) along the vertical profile of the lunar
material, and TB’s are provided in a closed form after inverting
a matrix of coefficients which describe the EM properties of
the considered lunar vertical structure. Coupling the EM and
TM solutions, the numerical simulation of TB’s as a function
of time (i.e., for different solar illumination) and lunar material
properties can be obtained. Both the TM and EM simulations
have been numerically tested against similar models developed
by other authors such as those in [6], [7], [11], [15], and [28].
These tests, not shown here for brevity, lead us to believe that
the simulations we use fit well the current state of the art of
modeling efforts for Moon studies. Further details about the
adopted RT forward model can be found in [2].

Concerning the RT assumption that volume scattering and
surface roughness effects are negligible, it should be noted
that, at S- and L-bands, volume scattering may be ignored,
but at higher frequencies, such as at Ka-band and above,
volume scattering can play a role depending upon the particle
distribution albedo [15], [25], [26]. The substantial scarcity
of information about the vertical profile of the subsurface
fragment size distribution has led us to neglect the effect of
volume scattering [6]. In regions which contain an average
concentration of centimeter-sized and larger sized fragments,
the latter is expected to be up to 30% of that due to heat flow
[25]. Indeed, at higher frequencies, the microwave penetration
capability is limited to upper layers, and this tends to limit the
effects of our approximation. Finally, the possible roughness
of surface and layer interfaces is also neglected even though
it could be included as a proper emissivity parameterization
representing the surface height standard deviation through a
small perturbation approach [16].

B. Permittivity Constant Models

This section focuses on the choice of the input parameters
of the RT forward model, particularly of the EM variables that,
as it will be shown later on, strongly affect the final results.
The value of complex permittivity constant, i.e., its real part
ε′(z, f) and imaginary part ε′′(z, f), as a function of frequency
f and depth z, has a significant impact on the penetration ca-
pabilities of microwaves so that their characterization is crucial
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for MiWaRS applications as well as for any other instrument
operating in the similar range of frequencies (1–24 GHz). It is
well established in the literature (e.g., [6]) that, for the lunar
regolith, ε′ has a power law relation with material density ρ
only, being its frequency dependence negligible

ε′r(z) = 10l·ρ(z). (1)

In (1), ρ is usually expressed in centimeters, and l is a con-
stant in cm3 · g−1. On the contrary, ε′′ shows a dependence with
frequency as well [12]. Note that the frequency dependence of
ε′′ is not always taken into account, particularly in recent works
about microwave radiometric studies of the lunar surface. To
our knowledge, the following model of ε′′, given in [12], is
probably the widest known:

ε′′r(f, z) = 6.079 · 10−5 · ρ(z) · ε′r(z) · f0.25. (2)

We have recently proposed an alternative model of ε′′ [2],
based on a nonlinear regression performed using lunar sample
from Apollo mission measurements (see [6] for details about
lunar samples). Note that measurements of Apollo lunar sam-
ples are reported only in the range of frequencies between 0.5
and 10 GHz. The proposed model of ε′′ is as follows:

ε′′r(f, z) = ε′r(z) · 10[a1·f+a2]·ρ(z)+b·pch−c (3)

where a1, a2, b, and c are empirical regression coefficients and
pch is the percentage of the chemical composition (i.e., dioxide
of titanium TiO2 and oxide of iron FeO) in lunar material. The
details about the parameters in (3) can be found in [2]. To
understand how the proposed permittivity models in (2) and (3)
differ to each other, a comparison between them is shown in
Fig. 1.

This figure shows the ratio ε′′/ε′ (known as loss tangent) as a
function of frequency. Values for material density ρ, needed in
(2) and (3), are obtained from consolidated hyperbolic relation
set up after Apollo 15 and 17 missions (see [6, p.493]). Few
available experimental values [6] at frequencies of about 0.5
and 10 GHz are also reported for comparison (see black circles
in Fig. 1). From Fig. 1, the model, given in (3), seems to
perform better than (2), particularly at 10 GHz. At higher
frequencies, due to the absence of experimental measurements,
the reliability of (3) is not guaranteed as well as that of (2).
However, we can interpret large values of loss tangent, provided
by (3), as a conservative choice since penetration capabilities
tend to reduce as the loss tangent increases. For frequencies
between 1 and 4 GHz, the two models are equivalent. It is
worth mentioning that, in [9], the loss tangent has been set,
independently from frequency, to 0.001 and 0.10 for regolith
and rock, respectively, whereas in [2], the model in (3) leads
to average values equal to 0.02 and 0.014, respectively. There
is an order of magnitude difference between the two choices
performed in [2] and [9]. This leads to different penetration
depths as well. They are reported to be on the order of 2 m in [2]
and 10 m in [9] at 3 GHz. On the basis of the aforementioned
discussion, we believe that the conservative choice of (3) should
be preferred in order to provide results which represent, in a
way, a “worst” case.

Fig. 1. Loss tangent model behavior. (Blue solid curve) Model from (3). (Red
dotted curve) Model from (2). Black circles are measurements on lunar samples
listed in [6, Table A9.16].

C. Forward-Model Setup

Hereinafter, simulations of TB’s at frequencies of 1, 3, 12,
and 24 GHz have been performed assuming a parameterization
scheme as in [2]. Different stratigraphy scenarios have been
also simulated. They are composed of stacked slabs of regolith
(RS), regolith plus rock (RRS), and regolith, ice, and rock
(RIRS) where the letter “S” stands for a scenario. For RRS
and RIRS, the thickness of the intermediate slab is varied to
include the expected variability of the lunar stratigraphy. The
maximum vertical extension of the whole slab is fixed to 5 m.
To further describe the uncertainty connected to the knowledge
of Moon stratigraphy properties, we have added a random zero
mean Gaussian noise to the loss tangent with a 71% of standard
deviation with respect to the loss tangent average trend. This
choice of the loss tangent variability agrees well with that of
measured values listed in [6, Table A9.16].

Two sets of independent synthetic data have been generated
for each frequency and Moon “virtual” scenario. The first set
is the training data set for training purposes of the inversion
algorithms. The second one is the test data set used to calcu-
late the accuracy associated with the microwave radiometric
retrievals. A total number of 696 320 samples of TB’s have
been generated and randomly divided between training and test
data sets.

III. INVERSION MODEL

The goal of the inversion methods, here proposed, is three-
fold: detect discontinuities beneath the lunar surface and es-
timate both the thickness of lunar regolith and the surface
temperature. To pursue these aims, the forward model, pre-
viously described and tuned to simulate TB response from
Moon scenarios, has been set up and used to train the proposed
inversion algorithms which are principally based on the NN
methodology.

A. NN Retrieval Algorithm

The use of NNs [18] is quite widespread in remote sensing
applications [23], [24] even though, to our knowledge, they
have never been applied to Moon parameter retrieval purposes.
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Fig. 2. Schematic flow chart diagram for discontinuity detection algorithm.

An artificial NN is a nonlinear parameterized mapping from
an input vector x to an output y = NN(x;p,M), where p is
the vector of parameters relating the input x to the output y,
whereas the functional form of the mapping (i.e., the archi-
tecture of the net) is denoted as M . In our case, the variables
x may represent the multifrequency TB’s, whereas y may
be either the surface physical temperature or the soil depth.
The multilayer perceptron architecture (MLP), considered here,
is a mapping model composed of several layers of parallel
processors. It has been theoretically proven that one-hidden-
layer MLP networks may represent any nonlinear continuous
function [18], while a two-hidden-layer MLP may approximate
any function to any degree of nonlinearity taking also into
account discontinuities [19]. The architecture M of the NN
will be denoted as M(nf , h, q) for a network with three layers
with a number of neurons equal to h and q within each layer,
respectively, and where nf coincides with the number of input
variables (i.e., the number of used channel frequencies). The
backpropagation training algorithm will be always used to
derive the parameters p, if not differently specified. In the
following sections, the use of the NN technique for the esti-
mation of the lunar subsurface discontinuity detection, regolith
thickness, and surface temperature estimation is described.

1) Subsurface Discontinuity Detection: The detection capa-
bility of discontinuities beneath the lunar crust, for example,
due to the presence of rock or ice within regolith strata, is an
important aspect to investigate in order to allow us to identify
the regions of the Moon where human outposts are easier to
build and human activities will be more sustainable. For this
purpose, we have set up a detection scheme, as shown in Fig. 2.
Using TB’s at all MiWaRS available frequencies, two discrim-
ination algorithms are foreseen. The first one is optimized to
distinguish between RS and the other two types of scenarios:
RRS and RIRS. The second discriminator is activated on the
basis of the output response of the first discriminator, and it
substantially tries to distinguish among RRS and RIRS. Both
discriminators are based on an NN classifier. After several em-
pirical tests, we found an optimal NN configuration consisting

of M(nf , 30, 1). Note that nf is left undefined since different
choices of input variables are possible. The definition of nf will
be discussed, case by case, in Section IV.

2) Subsurface Thickness Estimation: Discontinuities of the
material density profiles can be exploited to estimate the re-
golith (or even ice) thickness. The thickness estimation can be
accomplished by detecting the inhomogeneity of the density at
the interface between different types of materials. At least two
different methods of thickness estimation can be investigated.
They are labeled as “direct” and “indirect” methods.

In the “indirect” thickness estimation method, the inspec-
tion of the gradients, shown by the vertical profiles of lunar
material density, is used to identify their thickness. The “in-
direct” method requires two steps: the lunar material typol-
ogy detection (and consequently the definition of a density
profile model for each material typology) and the thickness
estimation through the gradient analysis of the density profile.
On the other hand, the “direct” thickness estimation implies a
determination of the position of the discontinuity directly from
TB’s exploiting the MiWaRS sounding capabilities and the
ability of the NN technique to easily describe the functional
relation between the multifrequency TB’s and the material
thickness. Both the “direct” and “indirect” methods have been
implemented through an NN, previously set up on a proper
training data set.

In order to illustrate the regolith thickness retrieval, Fig. 3
shows an example of density vertical profile for the two cases,
namely, RRS and RIRS. Black solid curves represent two input
density profiles that we assumed as “truth,” whereas red dotted
lines are estimates obtained applying the “indirect” method.
Due to the high number of sublayers in which the density
vertical profiles are discretized, a principal component analysis
(PCA) compression has been applied prior to run the NN. The
PCA approach, through the computation of the eigenvalues
and eigenvectors of the covariance matrix of several density
profiles, allows us to define a reduced set of basis vectors that
define a new reference system where the density profile vector
can be projected. Of course, an inverse PCA transformation
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Fig. 3. (Red dotted curves) Examples of density profile estimation for (left panel) (Reg.) regolith and (Roc.) rock scenario and (right panel) regolith, ice, and
rock. Black curves refer to the true synthetic profile. Discontinuities of black curves are due to supposed inhomogeneities within lunar scenarios.

has to be applied in order to restore the initial set of bases
where the original density profiles were described. The archi-
tectures M(nf , 10, 40) and M(nf , 10, 1) have been selected
for retrieving regolith thickness with “indirect” and “direct”
methods, respectively. From Fig. 3, the error variability of the
reconstructed density estimates (shown in red colors) is due to
the variability we imposed on the loss tangent during the TB
simulation. When RRS is considered (left panel), a relatively
small error is noticed as opposed to the RIRS case (right panel)
where the thickness estimations become very problematic even
in the ideal considered case. Of course, it is expected that lunar
discontinuities of vertical density profiles are not as sharp as
shown in Fig. 3 so that the inversion results have to be regarded
as optimistic.

3) Surface Temperature Estimation: As a final product of
MiWaRS, the surface temperature can be estimated using the
higher available frequencies. As mentioned before, MiWaRS
is not optimized to provide estimates of surface temperature
since its large footprint (approximately between 60 and 90 km
at 200-km orbit perigee) can provide only average values on
large areas. The selected microwave frequencies (1, 3, 12, and
24 GHz) have not been chosen to optimally sense the thermal
properties at the Moon surface, but they can provide an appeal-
ing side application of MiWaRS. Anyway, the quantification
of the associated errors can represent a valuable effort to com-
plement the surface thermal retrieval by other satellite sensors
(i.e., infrared radiometers). The generated synthetic data set
allows us to relate the surface temperature (Ts) to brightness
temperatures TB’s. This relationship for a time period equal to
a synodic period (i.e., a lunar day) is shown in Fig. 4.
TB against Ts signatures appear as a nested ovals since, as

the time goes on, the solar illumination varies so that a given
value of Ts can be registered both when sun rises and sets.
At higher frequencies, there is a higher sensitivity of TB with
respect to Ts since the energy contribution mainly comes from
the upper strata of the Moon. At lower frequencies, the opposite
happens. This justifies the flattened shape of the ovals which
are correlated with the frequency. From Fig. 4, it appears quite
evident that TB’s at 24 and 12 GHz are the most suitable for
surface temperature estimation. In this case, a feed-forward NN
M(nf + 1, 10, 1) will be used to estimate Ts from TB’s. The
time information has been also included within the input of the

Fig. 4. Simulated brightness temperature at frequencies of (blue, ·) 1 GHz,
(green, ×) 3 GHz, (red, ◦) 12 GHz, and (black, +) 24 GHz versus surface
temperature for a whole lunation period.

NN to discriminate between lunar day and night, and this allows
improving the error score, as will be shown in the numerical
result section.

IV. NUMERICAL RESULTS

This section aims at quantifying the inversion results ob-
tained starting from the forward modeling of TB’s at 1, 3, 12,
and 24 GHz. Inversion algorithms are focused on discontinuity
subsurface detection, regolith thickness, and surface tempera-
ture estimation.

The following results have been obtained after training the re-
trieval algorithms, previously described, with a training data set
and testing the performance with an independent test data set.
The test data set is composed of 87 040 samples. It describes,
for each frequency, all scenarios (with RS: 6400 samples;
RRS: 32 000 samples; RIRS: 48 640 samples) and the loss
tangent variability. The latter has been assumed to be Gaussian
distributed with a standard deviation, as described in Section
II-C. The large number of simulated samples is due to both the
temporal variations and the different thickness configurations
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TABLE I
SCORE ERRORS FOR MOON DISCONTINUITY DETECTION PURPOSES WHEN TB’S AT 1 AND 3 GHZ ARE USED

within a given scenario. Eventually, in order to model the
instrumental noise, introduced by the spaceborne radiometer,
we have added to the test data set a zero mean white noise with
two levels of standard deviation σn of 0.5 K (noise level 1) and
1 K (noise level 2) as well.

A. Detecting the Subsurface Discontinuity

After the definition of the test data set, the feed-forward
NN, previously introduced, has been trained and applied on
it. Different frequency choices for the TB input have been
investigated. To select the optimal frequencies among those
available for MiWaRS system, the probability of detection
(POD) and false alarm rate (FAR) skill scores have been used
[20]. POD and FAR are defined as follows:

POD =
H

H +M
(4)

FAR =
F

H + F
. (5)

In (4) and (5), H , M , and F stand for hit, misses, and
false respectively. H represents the number events where both
estimates and the “truth” agree (i.e., when a type of stratigraphy,
which really exists in our virtual scenarios, is detected from
TB’s), F indicates the situations where a type of stratigraphy
that does not exist is detected, and M represents the opposite
situation where we do not detect a type of stratigraphy that
really exists.

On the basis of POD and FAR indexes, we have found that
the frequencies of 1 and 3 GHz (nf = 2) provide the best score
with respect to other frequency combinations. Table I lists the
POD and FAR scores when TB’s at 1 and 3 GHz are used to
detect discontinuities following the scheme in Fig. 2.

Table I illustrates how the performance of the discriminator
1 in Fig. 2 (i.e., detection of a discontinuity that is the recog-
nition between RS and RRS or between RS and RIRS cases)
is different from that of discriminator 2 (i.e., decision about
the discontinuity type, that is, between RRS and RIRS once
the presence of discontinuity is detected). In our simplified
scenarios, the ability of MiWaRS in recognizing the presence
of a discontinuity is quite high, from 99% to 84%, depending
on the degree of instrumental noise (see Table I, POD score
of discriminator 1 where regolith with discontinuity is shown).

FAR scores are low as well, and they range from a percentage
of 0.71% to 7.49% in the worst case.

After detecting the presence of material discontinuity, the
discriminator 2 is applied, but in this case, the POD ranges from
70% to 72% (see Table I, POD score for discriminator 2). In this
case, FAR is fairly high with respect to the previous case, and it
ranges from about 26% to 30%. These results indicate that the
recognition of the type of discontinuity is difficult by MiWaRS,
and this is due to the high degree of overlapping among the
microwave signatures of the proposed scenarios at the selected
frequencies [2]. To have an idea of the whole performance of
the detection properties, the overall scores are listed in the last
row of Table I as well.

B. Retrieving Subsurface Thickness

On the basis of the results just shown, it appears reasonable,
from MiWaRS, to estimate only the thickness of the regolith.
“Direct” and “indirect” methods, discussed in Section III-A2,
have been applied on test data set using the frequencies of 1 and
3 GHz. As for the detection problem, other frequency choices
tend to lead to worse results. Scatter plots in Fig. 5 show the
estimates of the regolith thickness, compared with “true” syn-
thetic values for different scenarios and various degrees of ra-
diometer instrumental error (σn = 0 K, σn = 0.5 K, and σn =
1 K) when the “direct” method is applied. This figure shows
both the mutual correlation of the considered variables (i.e., the
degree of concentrations of points around the bisector line) and
their bidimensional distribution (the color code indicates the
density of points in a given portion of the figure). Its analysis
indicates that the proposed NN estimator seems to be unbiased
in the sense that most of the samples are distributed around
the bisector line. By increasing the instrumental noise level,
the tails of the distributions increase in size as well, indicating
large estimation errors. In order to quantify the performance of
thickness estimation, Table II summarizes the estimation errors
for both the “direct” and “indirect” methods. The distinction
between the retrievals, performed for RRS and RIRS, is also
displayed. The “direct” and “indirect” methods perform in a
similar way for all noise levels, when RRS is considered. This
is due to the fact that, in RRS case, the discontinuities between
regolith and rock are sharpened so that they are relatively easy
to identify. For a standard deviation instrumental accuracy, σn,
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Fig. 5. Scatter plots between simulated “true” and estimated thicknesses for different levels of instrumental noise. (From left to right panels) σn = 0, σn =
0.5 K, and σn = 1 K. Color bar indicates the percentage of samples for each position in the adopted reference system.

TABLE II
REGOLITH THICKNESS ESTIMATION ERRORS USING TB’S AT 1 AND 3 GHZ

equal to 1 K, the estimation root mean square error (rmse) is on
the order of 80 cm. When the composition of Moon stratigraphy
becomes more complex, for example, in the case of RIRS, the
errors attributed to the two estimation methods are different. For
example, taking the worst case of σn equal to 1 K, the “direct”
method provides an rmse of 80 cm that is sensibly lower than
119 cm which is obtained with the “indirect” method. The
correlation coefficients are quite high in all cases (being higher
than 0.75).

C. Surface Temperature

For what concerns the surface temperature Ts retrieval from
TB’s, the quantitative evaluation of the retrieval errors is listed
in Table III. Different choices of the radiometric frequencies
are possible: At 24 GHz, with σn = 0 K, we have the best error
score (rmse=1.44 K). Similar performances are observed
with the choice of the channel at 12 GHz when σn=0.5 K or
σn = 1 K. In summary, the use of 12 or 24 GHz appears to be
quite similar for the surface temperature purpose. The joint use
of 12 and 24 GHz does not improve the overall estimation tem-
perature scores (for example, whenσn=1 K, we have an rmse=
3.34 K against rmse=3.02 K when 24 GHz is used alone).

The overall results, summarized by Table III, reflect, in some
way, the behavior with frequency of TB against Ts, shown in
Fig. 4, where, as the frequency increases, the relation tends
to reduce to a vertical line. Another aspect to observe is that
the results listed in Table III are all obtained considering the
lunation period as an input variable for the NN-based estimator
since this choice allows discriminating between different sun
illumination levels. If the lunation period is not considered as
an input variable for the surface temperature estimator, the mul-
tisolution problem can occur, and worse results are obtained.

TABLE III
SURFACE TEMPERATURE ESTIMATION RMSES

V. CONCLUSION

A numerical evaluation of inversion approaches, capable to
retrieve Moon subsurface features from satellite-based bright-
ness temperature at frequencies in the range of 1–24 GHz, has
been carried out. The NN methodology has been employed due
to its flexibility, easy of use, and accuracy of the estimation
results. NNs are trained to pursue three main objectives: the
discrimination of the type of material present beneath the lunar
surface, the temperature estimation at the lunar surface, and the
estimate of the regolith thickness.

Based on forward modeling of Moon response, in terms
of brightness temperature, the results indicate how a passive
microwave radiometer operating at 1 and 3 GHz with accuracy
less or equal to 1 K is able to detect the presence of discontinu-
ities with a POD above 84%. This value is also conditioned
to the ideal virtual scenarios we have supposed to simulate
and the antenna footprint characteristics. For what concerns the
regolith thickness estimation, the expected error score in terms
of rmse is on the order of 83 cm with an increasing error as
the discontinuity beneath the lunar surface moves toward higher
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depths. If a channel at 24 GHz is added to the basic configura-
tion of 1 and 3 GHz, the temperature at lunar surface can be
retrieved with an error accuracy of about 3 K. Alternatively,
the 12-GHz channel can be used as an alternative to 24 GHz,
still maintaining approximately the same degree of accuracy.
Another important aspect, discussed in this paper, has been the
sensitivity of the final results to the choice of the forward-model
input parameters. The choice of material permittivity constants,
within the range of possibilities existing in the literature, may
strongly influence the final results. Values of loss tangent,
in agreement with those collected after the Apollo missions,
have been used. These values are generally higher, particularly
around the frequency of 10 GHz, with respect to those used in
past work. As a consequence, smaller penetrations into lunar
material are obtained from our numerical simulations when
compared to those available in the literature.

Future works can be devoted to increase the complexity of
the proposed scenarios in terms of more accurate EM models
and to the application of the proposed inversion methodology to
spaceborne microwave radiometric measurements of the Moon
surface and subsurface.
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