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Abstract—The objective of this paper is to investigate how the
complementarity between low earth orbit (LEQ) microwave (MW)
and geostationary earth orbit (GEO) infrared (IR) radiometric
measurements can be exploited for satellite rainfall detection and
estimation. Rainfall retrieval is pursued at the space—time scale of
typical geostationary observations, that is at a spatial resolution of
few Kkilometers and a repetition period of few tens of minutes. The
basic idea behind the investigated statistical integration methods
follows an established approach consisting in using the satellite
MW-based rain-rate estimates, assumed to be accurate enough,
to calibrate spaceborne IR measurements on sufficiently limited
subregions and time windows. The proposed methodologies are
focused on new statistical approaches, namely the multivariate
probability matching (MPM) and variance-constrained multiple
regression (VMR). The MPM and VMR methods are rigorously
formulated and systematically analyzed in terms of relative
detection and estimation accuracy and computing efficiency. In
order to demonstrate the potentiality of the proposed MW-IR
combined rainfall algorithm (MICRA), three case studies are
discussed, two on a global scale on November 1999 and 2000
and one over the Mediterranean area. A comprehensive set of
statistical parameters for detection and estimation assessment
is introduced to evaluate the error budget. For a comparative
evaluation, the analysis of these case studies has been extended to
similar techniques available in literature.

Index Terms—Data fusion, infrared radiometry, microwave
radiometry, rainfall estimation, satellite meteorology, sensor

synergy.

1. INTRODUCTION

HE ACCURATE retrieval of surface rain rate (RR) from
spaceborne remote sensing systems on a global scale with
high temporal and spatial resolutions is one of the major goals
of current scientific research [1]-[3]. Satellite-based method-
ologies can offer several advantages with respect to ground-
based techniques. The latter, such as those using rain gauges
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and radars, generally suffer from spatial coverage problems.
Rain gauge measurements, subject to errors due to evapora-
tion and surface winds, can only supply cumulative point es-
timates for limited areas (e.g., [4] and [5]). On the other hand,
ground-based radar systems can provide fairly continuous cov-
erage in space and time, but their spatial coverage is generally
limited to few hundreds of kilometers and phenomena, such as
beam filling, anomalous propagation, or bright band in strati-
form clouds, must be faced with any radar measurement of rain-
fall (e.g., [6]-[8]). Most importantly, both rain gauges and radars
provide incomplete coverage on a global scale, particularly over
the oceans where such instruments are sparse or nonexistent.

As an alternative solution, rainfall measurement from satel-
lites has been an active field of study. However, the problem
of using satellite remote sensing data appears to be fairly com-
plicated, since presently there is not a single spaceborne plat-
form that can carry all the suitable instruments to ensure all
the above-mentioned properties to the rainfall product [9]-[12].
From a meteorological point of view, visible (VIS) and infrared
(IR) radiometers can give information on cloud top layers due
to their high albedo at optical wavelengths and IR equivalent-
blackbody brightness temperatures (71r ) almost equal to cloud
physical temperature (e.g., [13] and [14]). On the other hand,
microwave (MW) radiometers can detect cloud structure and
rain rate, since MW brightness temperatures (15’°s) are fairly
sensitive to liquid and ice hydrometeors (e.g., [15]-[17]). Re-
garding platforms, geosynchronous earth orbit (GEO) satellites
can ensure a coverage with a high temporal sampling (order of
half an hour) from a flight altitude of about 36 000 km, while
low earth orbit (LEO) satellites have the advantage to fly at a
lower altitude (from 400-800 km), thus enabling the use of mi-
crowave sensors without losing too much in spatial resolution
(order of kilometers to tens of kilometers). The major drawback
of LEOs is the low temporal sampling, only twice a day in a
given place at midlatitude [1], [2]. Therefore, LEO-MW and
GEO-IR radiometry are clearly complementary for monitoring
the earth’s atmosphere and a highly variable phenomenon such
as precipitation [18]-[23].

Statistical integration of satellite IR and microwave data can
be accomplished in several ways. On one hand, there is a choice
of what variables (i.e., predictors) to match in order to provide
the final product. A possibility is represented by the direct
combination of nearly instantaneous MW T’z’s and IR TiR’s,
having the advantage to exploit the observable information
without any postprocessing and the disadvantage to request IR
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and MW measurements matched in space and time. However,
the latter condition is only satisfied a limited number of times
in a given area if few LEO platforms are considered, thus
flaring the potentiality of setting up a rapid-updating retrieval
algorithm. The feasible approach would be that based on
physically based combined retrieval algorithms which, on the
other hand, would need a climatological and microphysical
tuning (e.g., [5] and [24]).

In order to avoid these difficulties, one can resort to ap-
proaches that aim to combine IR measurements and MW-based
estimates on a statistical basis. By properly choosing a
space—time resolution, the ergodicity of the rain process and
satellite observations can be invoked. The inversion algorithm,
i.e., retrieving rain rate from IR data, can be then derived
by using statistical regression or probability matching of the
involved variables (or corresponding statistical moments)
[6], [25]. Even though less physical, the statistical matching
exhibits several peculiar features that can be easily exploited
for an operational global-scale approach. Indeed, artificial
neural networks can be conveniently applied to the same
problem dealing with empirically trained algorithms showing
comparable performances [26], [27].

In this paper, a systematic analysis of statistical integration
methods is carried out in order to use MW-based rain-rate esti-
mates to calibrate IR measurements. It is worth mentioning that
the emphasis is not on the rain-rate estimate validation (inves-
tigated elsewhere [28]), but on the testing and verification of
MW and IR data fusion techniques to reproduce MW-derived
RR fields, assumed as “ground truth.” Here, we limit our in-
terest to the use of microwave radiometric data, derived from
the Special Sensor Microwave Imager (SSM/I) aboard the De-
fense Meteorological Special Program (DMSP) satellites and
from the TRMM Microwave Imager aboard the Tropical Rain-
fall Measuring Mission (TRMM) satellite coupled with data
from the Visible Infrared Spinning Scan Radiometer (VISSR)
aboard MeteoSat satellites. Satellite-based passive MW data ex-
hibit the unique feature of a global-scale availability with a rel-
atively low cost and increasing number of platforms. A gener-
alization of the proposed techniques to rain-rate estimates, de-
rived from not only other spaceborne sensors such as the Pre-
cipitation Radar (PR) on TRMM and the Advanced Microwave
Scanning Unit (AMSU) on National Oceanic and Atmospheric
Agency (NOAA) satellite, the Advanced Microwave Scanning
Radiometers (AMSR) aboard EOS-Aqua and ADEOS-II satel-
lites, but also from both rain gauges and ground-based radars
(e.g., [18], [20], and [29]), is almost straightforward. In case
of a multisatellite MW radiometer constellation, the issue of
rain-rate product consistency has to be faced in order to ensure
at least a statistical homogeneity.

The proposed MW-IR combined rainfall algorithm
(MICRA) is based on the statistical integration of collocated
GEO-IR and LEO-MW data, accomplished on a global scale
using an ensemble of subregions, partially overlapped. This
time—space segmentation permits also to analyze stationarity
and homogeneity statistical properties of the precipitation
random process. New techniques, named multivariate prob-
ability matching (MPM) and variance-constrained multiple
regression (VMR), are investigated in terms of relative estimate
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accuracy, algorithm parameter sensitivity, cloud classification
impact, and computing efficiency. Similar techniques, avail-
able in literature, are also considered for comparison. As an
application, some case studies on a local and global scales
are finally discussed, in order to demonstrate the potentiality
of monitoring rainfall attenuation and precipitation using the
proposed statistical integration techniques.

II. STATISTICAL INTEGRATION TECHNIQUES

The general idea behind the MICRA considered statistical
integration techniques is to combine the appealing spatial and
temporal sampling of IR sensors, mounted on geostationary
platforms, with the higher accuracy of passive MW methods for
of rain-rate retrieval. The statistical integration techniques are
applied within a procedure which is supposed to run continu-
ously on global scale. This procedure is based on a background
process and a foreground process. Both the block diagram and
the temporal flowchart of MICRA are schematically sketched
in Fig. 1.

The background process consists first in estimating the sur-
face rain rate from available LEO-MW measurements by means
of either empirical retrieval algorithms (e.g., [30] and [31]) or
inversion schemes based on parametric cloud radiative models
(e.g., [5], [10], [16], and [24]) (inversion step). This means that
we are considering an estimator '~ that enables the inversion a
setof T's’s at frequency v,, and polarization p,,, generally span-
ning from 10-50 GHz and two linear orthogonal polarizations
for rainfall applications, to provide a rain-rate product spatially
integrated within the nominal area A. In an explicit form, it can
be stated that

R=F~"Tg(vi,p1), Ts(v1,p2),- .-,

Te(vn,p1), TB(vN,p2)] (1)
where IV is the number of frequencies for two polarizations p;
and p». Notice that the field of views of satellite T'z’s are fre-
quency dependent (ranging from 60 km down to a few kilo-
meters), and the estimation accuracy over land may be largely
worse than over ocean [32]. On the other hand, as already said,
the estimator can include any type of rainfall measurement both
from space and from the ground.

The second step of the background process pursues the
combination of LEO-MW sensor data with data coming
from GEO-IR sensor in space and time on a global scale
(collocation step). The first step of the background process
is to locate temporally the GEO-IR data within the past few
tens of minutes of the LEO-MW data time and to remap
into the geographic coordinates both GEO-IR and LEO-MW
measurements available observations. Note that since spatial
resolution of MW data is generally worse than IR ones, a MW
field of view of nominal area A generally includes more than
one IR pixel. For DMSP-SSM/I products, for instance, the
nominal resolution of 25 km corresponds at midlatitudes at
about 5 x 5 pixels of the MeteoSat-VISSR IR channel [21],
[33]. Thus, for a given MW-based rain rate R, attributed to
a nominal area A, we can compute several spatial moments
of IR brightness temperature Tir: 1) average value 7, within
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Fig. 1.
estimate of rain rate, respectively. (b) Temporal flow diagram of MICRA.

A; 2) minimum value T,,, within A; 3) standard deviation o
within A. If V4 represent the IR pixels within the nominal area
A, a numerical evaluation of previous quantities is given by

12

T, = mjn[Tm]

2)

where min 4 is the minimum operator within A. The inclusion
of T,, and or, besides T,, can give an information of spatial
texture of IR field within the nominal area A.

As a result of the background process, a dataset is generated,
containing the per-pixel rain rate retrieved from LEO-MW data,

(®)

(a) Block diagram of MICRA. T’z and T1r indicate MW and IR brightness temperature, respectively, while 12 and R indicate the MW-based and IR-based

the colocated GEO-IR brightness temperature, and the pixel
geolocation. This process is continuously ongoing, since new
LEO-MW and GEO-IR data are continuously ingested on a
global scale depending on available satellite platforms. A pre-
processing stage, which will be described in the next section,
is accomplished after each background process as illustrated in
Fig. 1.

A foreground process is started to derive the R-Tir inverse
relationship once the dataset has been updated, as shown in
Fig. 1(b). The entire globe is divided in subregions S which are
equally sized (by « x o degrees) and spaced (by 3 degrees). The
parameter « is generally chosen larger than /3 in order to assure a
smooth transition between adjacent subregions. The IR retrieval
relationships are updated every time a new set of combined data
have been added to the dataset relative to that subregion and are
derived using data archived in a time window of several hours
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(integration step). As a matter of fact, to assure that only the
most recent rain history is captured and to guarantee a statistical
significance of the training set, the R—T1r inverse relationship
for a given subregion is derived using only the most recent com-
bined data. The last step is represented by the prediction of the
surface rain rate from IR measurements in a given subregion by
applying the derived R—T1gr algorithm (retrieval step).

As already mentioned, many attempts have been carried out so
far to derive this R-Tig relationship, using different techniques
such as probability matching formulations, regression methods
and artificial neural networks. In the next paragraphs, the new sta-
tistical methods will be illustrated. In the next two sections, some
details on the implemented background and foreground processes
will be given together with the discussion of case studies.

A. MPM

The probability matching criterion was first introduced in
radar meteorology to derive rain-rate estimates from radar re-
flectivity measurements [6]—[8]. Its extension to satellite rain
measurements is almost straightforward, even though some de-
ductions ought to be derived with caution.

The basic idea behind the probability matching technique is
to derive the inverse relationship between measured IR data and
rain rate using the corresponding histograms of the occurrences
of R and the average value T If pr and pr, are the probability
density functions (pdfs) of R and T,, respectively, we can trans-
late this concept by the following equality:

pR<R)dR = pTa(Ta>dTa- (3)

There is a theoretical and experimental evidence that the correla-
tion between R and T, is basically negative, i.e., ¢(R, T,) < 0.
This indicates that higher rain rates are associated to lower IR
brightness temperatures due to the increasing cloud opacity and
top height [13], [14]. Moreover, both R and 7, are positive de-
fined. Thus, the probability matching functions can be written
from (3) as

Pr(R<R)=Pro(T, >To) =1— Pro(T, <T,) (4

where Pr and Pr, are the cumulative distribution functions
(cdfs) or probabilities of I and T}, respectively, R is the es-
timated value of rain rate, and 7Ty, is the IR measured average
value of T1g. By considering the sensitivity of any MW-based
rainfall estimation, a minimum nonnull value R of R will cor-
respond the (maximum) threshold value 7o of T, so that

Rg T,
/ pr(R)AR = / pra(T2)dT,. )
0 Tao

From (5) and (4), the univariate probability matching (UPM)
can be stated as
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From (6), the retrieval relation B = fu (Ta) can be easily de-
rived. Some details on the implementation aspects will be given
later on.

In order to extend the UPM technique to the multivariate case,
it is opportune to transform (6) into a formally easier form by
setting

a0 — Ta - (7)

By noting that now ¢(R,t,) > 0, i.e., there is a positive corre-
lation between R and the transformed variable ¢,, and it holds

PTa (Ta)dTa = Pta (ta)dta (8)

the general expression (6) can be transformed into

ty =

R .
[ patR)iR = Pa(k < B) = [ pua(ta)dts = Pulta <72)
Ro 0
N ~ ©)
where Py, is the cdf of ¢, t, = To— T4, and itholds py, (t,) =
—PTa (TaO - ta>~
The extension of UPM to the bivariate case is now straightfor-
ward. Considering the minimum value 7},, within the nominal
area A as the second random variable, we need to consider the
joint pdf prarm of T, and T, so that (3) becomes

pR(R>dR = pTaTm(Ta7 Tm)dTa dTm (10)

Since it results that ¢(R, T,,) < 0, we can pose in a way anal-
ogous to (7)

(11)

It worth noting that ¢(R, ¢,,) > 0 and, coupled with T, the
threshold value T3, is defined by

m0 — Tm

tm =

Ry To Tm
/pR(R)dR = / / pTaTm(Ta7 Tm)dTadTm (12)
0 Tao T'imo

Since again it holds

PTaTm(Tas T )ATod T = Dratm (tas tm )dtadt, — (13)
(9) can be generalized to the bivariate or MPM
R
/pR(R)dR =Pr(R < R)
Ro
Ty o
= / /ptatm (ta,tm)dtodty,
0 0
= Patm(ta < tastm < tm) (14)
where Piatm is the joint cdf of ¢, and £,,, ?m =T —Tm. From

(12), the retrieval relation R = far(To, T, can be obtained.
The proposed theoretical framework could be easily extended to
IR multispectral measurements in order exploit VIS/IR channel
combination [36], [37].

Expression (9) can be further transformed by applying the
Bayes theorem (e.g., [24]). In fact, the joint pdf can be handled
in the following way:

Ptatm (ta7 tm) = Pta (ta)ptm (tm|ta) (15)
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where Py, (6 |ta) is the conditional pdf of ¢, to ¢,. Thus, the

Bayesian form of MPM is given by

R T, tm
/pR(R)dR = /pta (ta) /ptm (tm|ta)dtmdta (16)
Ro 0 0

The latter Bayesian form can be used to derive some special
simplified form of MPM. If ¢,, is statistically independent (dis-
joint) of t,, then P, (tm|ta) = Ptm(tm) and (14) reduced to
the disjoint MPM (D-MPM)

R t, tm
/pR(R)dR = /pta (ta)dtm /ptm (tm)dta (17)
Ro 0 0

i.e., to the product of the probabilities of ¢, and ¢,,,. Of course, if
?m — 00 or, better, 1;,,p — oo, then D-MPM reduces to UPM
due to the normalization to 1 of pdfs.

Another interesting case is the one where the joint pdf of ¢,
and t¢,,, can be expressed as

ptatm(ta7 tm) = ptm(tm)pta (ta|t ) 6( )pt@ (t |t )
_as)
where the pdf of ¢,,, is a Dirac function 8, centered in ¢,,,. In this

case, (14) reduced to the conditional MPM (C-MPM) given by

[ s

Ro 0

19)

where the measured value tm is the conditional value of ¢, prob-
ability density.

Some considerations on the numerical implementation
of MPM algorithm family can highlight their computation
efficiency. Let us refer to the Bayesian form of MPM, given by
(16). If pdfs are approximated by corresponding histograms of
occurrences, we can estimate pdf of discrete variables R;, t;,
and ¢, by assuming uniform bins

Ngi
R) =
S N
Ni, .
a (ta = ;
pt’( 7) NSAtaz
Ntmk| ta .
o (o Jte) = e Ty 20
Dt ( A| ]) NSAtTr” ( )

where Ng; and Ng are the number of data in the 7th bin R; and
the total number of space—time coupled data (records) in the
given subregion S, respectively. Assuming a uniform bin size
AR,ie., AR; = AR, the pdf normalization property implies
that

2

ZPR

where N are the number of available bins for R such that
Npg = [max(R)—min(R)]/AR. Analogous notations are valid
for the discrete variables Z,; and ,,,1. By substituting (20) into
(16), we obtain

VAR; = ARZpR =1

i=1

N~

Ng ]\L:a tm
S N =3NS (Vo)
i=1 j=1

(22)
k=1
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where v = 1/Ng and N3, NZa’ Ntvm are the number of oc-
currences relative to the ¢th, jth, and kth bin, respectively, such
that ; = R is the estimate, and ?,; = %va, tmk = fm are the
IR measurements. The last formula suggest an effective numer-
ical implementation of MPM by means of lookup tables. The
discretization of involved variables, i.e., I;, to; and t,,5, can
play a role in the accuracy of the inversion algorithm and will

be considered in the next sections.

B. VMR

Another classical choice when dealing with the statistical in-
version problem in a multivariate context is to resort to the mul-
tiple regression method. Again, our goal is to derive the estimate
R from a set of IR radiometric measurements, i.e., 1, and 7;,,,
with a given subregion S where N are supposed to be available,
i.e., to find a relation the inversion relation R = fr(Tu, Th).
A matrix formulation of the problem can be useful to introduce
the proposed regression technique. _ o

Let us consider a measurement vector = T = [T, T,],
where the prime indicates array transposition. If the unknown
estimator function R = fr(T) is expanded in a Taylor series
around the mean value (t), a polynomial expression of an ar-
bitrary degree M with unknown expansion coefficients can be
written. The polynomial terms can be either powers of T,, and
T,, or powers of their mixed terms. By neglecting the mixed
terms, for simplicity, a generalized predictor vector, character-
ized by polynomial variables centered around the mean can be

introduced, i.e., At = [AT, AT,, AT2 ATZ ... ATM ATM)
such that
. ). . 1 Ns _
AT, =T, — (T, =T, — — Tus
~ ~ ~ 1 Ns _
AT =T — (Ton) = Ton — — S T (23)
(Tn) P ;

If a training dataset is available, the search for expansion co-
efficients can be accomplished by means of an inverse linear
problem by minimizing the sum of square errors between the
polynomial estimator R = fz(T) and the known value R. The
solution to this problem is called ordinary multiple regression
(OMR) and is given by

R = (R) + DourAt = (R) + Cr,C71At  (24)
where, consistently with (23), (R) is given by
1 o
= E—— S - 2
s ; R (25)

In (24), DomRr is the OMR coefficient matrix, Cr; and C; are
the cross covariance between R and At and the autocovariance
of At, respectively, whose estimate is given by

Ng

1 ~
o E R At
Ng—1 po s

1O
C At At
T Ng—1 ; s

Chre

1

(26)

Note that OMR is sometimes referred to as ordinary least square
solution or D-matrix technique.
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Apart from its implementation simplicity, a further appealing
aspect of (24) is that it can be deduced even under particular
constraints in order to ensure more robustness to test data
noise. This feature is very suitable in our context, since the
rainfall 2, which we consider to be “true,” are indeed derived
by MW-based inversion algorithms as expressed by (2). Thus,
apart from instrumental noise, a further random error should
be taken into account due to the so-called calibration step. As
already mentioned, MW radiometric estimation of rain over
land is one of the major sources of inaccuracy, but space—time
undersampling of a given subregion should be considered as
well. Thus, the inverse problem can be represented by a random
error €, affecting At, presenting both a systematic and a
random component.

In this scenario, it would be highly recommended to devise
an rain estimator R = fr(T) with a special robustness with re-
spect to these uncertainties [34], [35]. Extending the OMR ap-
proach, it is possible to give a robust estimation of R, based on a
variance-constrained multiple regression method whose formu-
lation is given by

R = (R) + DyurAt = (R) + Cr, (C;! +7C,) At (27)

where Dy g is the VMR coefficient matrix, -y is the constraint
factor, and C,, is a diagonal matrix derived from the autocovari-
ance matrix C;. Details on the derivation of (27) are exposed in
[36]. Notice that for v = 0 (27) yields (24), while by definition
~ = 1 means to double the variances of C;.

The critical aspect in the use of (27) is the choice of the con-
straint . Empirical ways can be followed by successive trials
starting. An objective criterion is to ensure that the estimates R
must be positive defined for any At belonging to the training
dataset, starting from v = 0. This physical condition can be
formulated as

v:R=(R)+ Cpr(C;+~C,) At >0 VAt. (28)

If (24) already satisfies the previous condition, «y is obviously
set to zero.

An interpretation of (27) can be given in terms of singular
value decomposition (SVD) analysis of C;. When SVD is ap-
plied to a symmetric (covariance) matrix, it reduces to principal
component analysis (PCA), which can be stated in terms of the
ith eigenvector a;; and associated eigenvalues \; of the fol-
lowing eigenvalue problem:

where I is the identity matrix. Each eigenvalue J; is proportional
to the variance of the corresponding principal component with
the well-known normalization property

M
doai=1
i=1

being A; and A, the largest and the smallest eigenvalue, re-
spectively. Assuming an equal noise level for each channel, if
o2, indicates the variance of the random error &;, then the SNR
can be defined as

(30)

A2
M €)))

Oct

SNR =

1023

By applying SVD to the constrained covariance (C; + vC,),
due to its structure it can be shown that this covariance has the
smallest eigenvalues A.j; always larger than Ay, (if v # 0). It
results that

At = A +YComm (32)

where C,pras is the Mth diagonal element of C,,. This implies
that, given the same noise level, VMR is implicitly increasing
SNR with respect to OMR. The price of a robust inversion is
related to a smoothness of the retrieval solution, which converts
into a slightly less accuracy of the rain estimates when data are
not affected by anomalous conditions.
Finally, by using (26) together with (27), we can write a poly-
nomial VMR estimator of R as
M
R=do+ Y dim(Ta)™ + dom(T)™
m=1

where dg, d1,,, and ds,, are the regression coefficients.

(33)

C. Literature Algorithms

Satellite-based rain algorithms, using the probability
matching technique, have been already developed by several
authors [19]-[21]. The approach is basically similar to what
we have called univariate probability matching and whose
formulation is given by (6). Some differences may arise with
respect to: 1) the choice of the minimum rain-rate threshold Ry;
2) the discretization of the histogram bins; 3) the dimension of
subregions. Besides, instead of using the matching of pdf as in
(6), some authors prefer to match the first of higher statistical
moments of both random variables. Since these differences are
conceptually minor ones, we used UPM as a reference in this
by applying the same implementation choices considered for
the MPM technique.

The regression method has been also used in literature [18],
[21]. An example is the so-named microwave-infrared rain re-
trieval algorithm (MIRRA) [21]. This is basically similar to
the one here described. A cutoff minimum IR brightness tem-
perature T,,. is chosen to separate the data into raining (i.e.,
Tir < T,,.) and nonraining (i.e., Tig > T,.) subgroups and
calculated in the considered subregion as follows:

Hn — HPr

Tmc = r +NRNN +NR

where (1,- and p,, are the mean 7T;,, for the raining and nonraining
subgroups of data pairs, respectively, and N and Ny represent
the number of raining and nonraining pairs in each subgroup.
Once T, has been found, a regression line is anchored at the
point R = 0 and T},, = T}, in the R — T,, plane. Considering
only the raining data subgroup, an ordinary least square tech-
nique is used to derive the rain-rate estimate by means of

R=a+bT,, (35)

where a and b are regression coefficients. The update of
the latter coefficients is performed whenever a new set of
LEO-MW data are available. A minimum of at least ten
coincident LEO-MW-derived rain rates higher than a threshold
of 1 mm/h are requested.

Apart from (34), the MIRRA method, tested on the tropical
data, is analogous to the VMR technique, illustrated in Sec-

(34)
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tion II-B, with the constraint factor equal to zero, a choice of
a first-order polynomial (M = 1) and a use of only 7}, data.
MIRRA will be used as a comparison algorithm in the next sec-
tions by using as a training set the combined data in the given
subregion.

III. DATA ANALYSIS

In this section, some details about the MICRA preprocessing
step will be given together with the definition of the score in-
dexes to be used in the data analysis.

A. Data Preprocessing

MICRA statistical integration techniques, described in Sec-
tion II, can be applied to combined MW-IR data in a given sub-
region S to derive the R—T1R inverse relationship. The behavior
of such algorithms is expected to be affected by surface condi-
tions and rain regimes. The evolution of precipitation systems
is strongly dependent on whether the embedded environment is
maritime or continental [40]. On the other hand, rain structure
can differ a lot if the regime is basically stratiform or convective
giving rise to moderate or intense precipitation [5], [7].

A way to maintain a sort of “homogeneity” within the training
combined dataset with respect to these feature is to preclassify
combined data within each nominal area A and then apply the
foreground process to each class separately. This approach has
the advantage to introduce a physical point of view within the
construction of the training dataset and can be equivalent to per-
form a stepwise statistical inversion. On the other hand, it can
limit the number of available realizations within each class and
can bring a further misclassification component within the total
error budget.

A simple approach to subregion classification is to defined
five precipitation classes as follows:

1) moderate (stratiform) rain over land;

2) intense (convective) rain over land;

3) moderate (stratiform) rain over ocean;

4) intense (convective) rain over ocean;

5) rain over coastlines.

The identification of surface type is provided by satellite nav-
igation data whose accuracy can be estimated to be about a pixel
or a fraction of pixel. Coastline identification at the MW sensor
spatial scale (order of tens of kilometers) reveal to be highly
affected by geolocation errors and by mixed surface emissivity
conditions [33]. The latter error source can be quite significant
if MW lower frequency are predominantly used. From this per-
spective, the introduction of the last class (rain over coastline)
is aimed to enucleate this problem.

A more complicated issue is the classification of rain regimes.
Indeed, this label could be provided by the passive MW re-
trieval algorithm, given in (1). This feature can be extracted both
from empirical and from model-based techniques, while MW
operational algorithms do not generally attempt to provide this
information [5], [30], [39]. IR observations can also be used
to identify rain regimes, especially the convective ones, even
though some ambiguities with respect to cirrus clouds must be
solved [18], [36], [40]. In the following steps, we assume that
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the surface identification has been already carried out so that
rain regime is separately identified over land and ocean.

In case of unavailability of cloud classification label, the sim-
plest approach is to use a rain-rate threshold R; and to identify
a moderate (stratiform) regime when R < R; and an intense
(convective) regime when the opposite occur. Values for R; can
range from 5-15 mm/h, considering that R is a product at a
fairly low spatial resolution when estimated from satellite MW
radiometers.

As an alternative, a threshold approach can be applied to
IR measurements instead of R estimates. Generally speaking,
higher Tir are associated to lower clouds with stratiform rain-
fall, while lower 1ir are attributed to tall cumuliform clouds
with intense precipitation. When coupling MW and IR data, the
ambiguity due to cirrus clouds is automatically removed being
MW sensing not affected by ice clouds. In order to be less de-
pendent on meteorological conditions, a simple classification
of “high” raining clouds can be performed by discriminating
with respect to the differential temperature ¢, defined in (7), by
means of the following criterion:

,tVCL = (Ta() - Ta) < tat (36)

where t,; is the threshold value. The latter can assume values
between 40 and 50 K. “Low” raining clouds are identified when
(36) is not satisfied.

An third choice is to performed a unsupervised classification
to derive centroids m%) and variances 012z ®) (with respect to the
centroids) of moderate (k = 1) and intense (k = 2) rain classes
by using an historical archive for each subregion S. Then, a
maximum-likelihood (ML) classification technique can be ap-
plied by minimizing the following objective function:

(R - m%))2

20
ORr

dyrn(k,R) = (37)
where a Gaussian pdf for R deviations has been assumed.

As already mentioned, the validation of the two integration
techniques has been carried out considering only nearly coinci-
dent MW and IR passages over a given classified subregion S.
The maximum delay between IR and MW available images is
at most equal to the half of GEO sensor recording period (e.g.,
about 15 min for Meteosat VISSR). Once a new, coincident MW
and IR passage occurs, an automated task is started to process
the available statistic files, sorted by time, using the geolocation
data for each collocated data point to build up separate datasets
of IR temperatures and associated MW rain rates for the appro-
priate box.

To assure that only the most recent rain history is captured,
the rain rates R and the IR temperatures 11 datasets are filled
until the data occurrence within a given subregion exceeds a
threshold. This occurrence threshold Ng; expresses the number
of pixels, covered by MW-IR combined data, to which MPM
and VMR are then applied. A criterion to established this oc-
currence threshold can be linked to the bin resolution of data
histograms in the sense that, if N, is the number of bins through
which a pdf is approximated, then

Ns¢ = pNy (38)
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TABLE 1
CONTINGENCY TABLE FOR THE EVALUATION OF RAIN AND NO-RAIN
PIXEL DETECTION. SEE TEXT FOR SYMBOL EXPLANATION

Observed Rain | Observed No-Rain
Detected Rain Npp Nyp
Detected No-Rain s L

where p is multiplicative factor. Note that IV, represent the
number of rain-rate bins N and temperature bins Np, as
in (22). For a statistical significance of the dataset, a rule of
thumb is to set « between 4 and 7, while N, can range from
100-150. Depending upon how recently a given geographical
region was scanned by a LEO-MW, the overall data used in
some of the subregion datasets may be only a few hours old,
whereas other regions may require a longer “memory” time to
reach the coverage threshold, that is Ng > Ng;. A maximum
lookback time limit of 24 h is generally set. If a subregion has
not reached the coverage threshold by this time, this region is
marked as “unavailable,” until eventually an update cycle will
capture newly observed microwave data in this subregion.

As a last step of the preprocessing stage, a percentage ratio
Pxr, expressing the number of the nonraining combined data
N withrespect to all combined data Ng within each subregion,
has been introduced, i.e.,

Ny Ny
Pxr = 100 Ne IOONN .
where Ny are the raining data. If a threshold Pygy is exceeded
in a given subregion, the retrieval phase is forced to assign a
zero R value to each pixel in that subregion. Values of Pyt
can range from 90% to 99%.

(39)

B. Analysis Indexes

In order to systematically analyze the results, we have intro-
duce a fairly large set of indexes to quantify both the detection
and estimation accuracy of the considered rainfall combined al-
gorithms.

The first set of six indexes allows to evaluate the rain detec-
tion capability of each method, i.e., to discriminate between
raining and nonraining pixels. Table I illustrates the so-called
contingency table, which provides the number of correctly and
incorrectly classified pixels with respect to rain and no-rain
regimes. Nomenclature is such that the “observed” (true)
pixels are those whose rain is derived from MW-LEO sensors,
while the “detected” ones are those whose rain is derived from
IR-GEO integration technique at the same collocated time. A
threshold value of 0,1 mm/h for rainfall is selected to delineate
rain areas both for observed and detected rain-rate values.
Moreover, the first subscript of n in the table stands for the
observed pixel, while the second for the detected one. Thus,
npp and 1y express the number of pixels, detected as rain
and no-rain, respectively, when the observed pixel is a rain one.
On the opposite, 1 ;;, and n , 5, expresses the number of pixels,
detected as rain and no-rain, respectively, when the observed
pixel is a no-rain one. It is clear, from these definitions, that
npp and ny g are the number of correctly classified pixels,
while both n 5, and n 5 indicate erroneous detection.
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From the contingency table, it is straightforward to introduce
some useful score indexes, able to highlight specific capabilities
of the detection algorithms. These indexes are defined in Table IT
where the worst and best values are also indicated for clarity.
The probability of detection of rain (PODR) and the false-alarm
ratio (FAR) have to be considered together because, for instance,
the extreme case to detect precipitation everywhere would result
in a high PODR, but in a large FAR as well. The same is true
for the PODR and the probability of detection of rain (PODNR)
because, in case of estimating precipitation everywhere, would
result in a high PODR, but also in a low PODNR. The critical
success index (CSI) is a severe score because it gives no credit
for the correct identification of no-rain pixels, which are gen-
erally the majority with a subregion. The Hansen and Kuiper
index (HKI) accounts properly for both rain and no-rain pixels.
Relevance of over- and underestimation effects is measured by
the index of symmetry error (ISE): an unbiased estimate scores
a zero value of ISE, while ISE takes negative (positive) values
in case of overestimation (underestimation).

The second set of parameters, reported in Table III, allows
to evaluate the rain estimation capability of each combined
method. In Table II, where the worst and best values of each
parameter are also indicated, Ny is the total number of com-
bined MW-IR observations, available in all subregion along
the test period, while € is the rain-rate error between observed
R and estimated R values, i.e.,

er=R—-R. (40)

Thus, R represents the mean value of MW-based rain rates, €
the mean value (bias) of the rain-rate estimate errors, while 0%
and O'?R are the standard deviations of rain rates and rain-rate es-
timate errors, respectively. Note that, while the normalized error
bias (NEB) and the fractional mean reduction (FMR) are mea-
sures of the error bias or mean value, the fractional variance re-
duction (FVR) and fractional standard error (FSE) are a measure
of the error variance and root mean square value, respectively.

IV. APPLICATION

Two case studies have been utilized to evaluate the MICRA
statistical integration techniques. Satellite data have been col-
lected from SSM/I aboard DMSP platforms, from TMI aboard
TRMM and from VISSR aboard MeteoSat platforms. The back-
ground and foreground processes have been run for each case
study, and various integration techniques, such as UPM, MPM,
VMR, and MIRRA, have been intercompared in terms of both
detection and estimation accuracy.

A. Sensitivity Analysis

As already mentioned, starting from IR temperatures within
each subregion and with a 24-h backward window, we have es-
timated the rain rate using both MPM and VMR methods. This
rain-rate estimate has been then compared with the MW-derived
rain rates, available from the subsequent LEO-MW sensor over-
pass and used as a reference (“ground truth”). This evaluation
strategy has been set up basically to assess the capability of each
integration technique to “calibrate” IR measurements in terms
of rain rate.
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TABLE 1I
RAIN DETECTION INDEXES, USED TO EVALUATE THE RAIN DETECTION CAPABILITY OF EACH METHOD, 1.E., TO DISCRIMINATE BETWEEN THE RAINING AND
NONRAINING PIXELS. FOR EVERY INDEX IT IS ALSO REPORTED ITS WORST AND BEST VALUE

Analysis Index Expression Worst value Best Value
n A
PODNR (Probability Of Detection of No Rain) L 0 1
Mk T
s
PODR (Probability Of Detection of Rain K& 0 1
Mpi T MRi
. "NR
FAR (False Alarm Ratio) 1 0
"Rk TNk
. "RR "Nk
HKI (Hansen and Kuiper Index) - -1 1
ri TNk "k T NN
Ny —Nys
CSI (Critical Success Index) NN ___NR 0 1
I
n R Ié
ISE (Index of Symmetry of Error) +1 0
/S v of Npp YRy TNk
TABLE III

RAIN ESTIMATION INDEXES, USED TO EVALUATE THE RAIN ESTIMATION CAPABILITY OF EACH METHOD, 1.E., TO COMPUTE THE ACCURACY OF RAINFALL RATE
RETRIEVAL FOR A GIVEN PIXEL. FOR EVERY INDEX IT IS ALSO REPORTED ITS WORST AND BEST VALUE

Analysis Index Expression Worst value Best Value
1
N Z Er; &
NEB (Normalized Error Bias) L i v - = Ri oo 0
T
T =1
. . E - 5 R
FMR (Fractional Mean Reduction) = -00 1
0-12? - 0-62‘ R
FVR (Fractional Variance Reduction) 7 = 1
OR
’—2 2
FSE (Fractional Standard Error) Ep T 0 R o 0
R

Before intercomparing the various MICRA algorithms, a sen-
sitivity study has been accomplished to determine the most crit-
ical configuration parameters. This sensitivity analysis has been
carried out by using a large historical combined test dataset,
spanning over one year (from November 1999 until November
2000) and not containing the two case studies presented here.
As mentioned before, for simplicity we restricted our analysis
to data coming from DMSP, TRMM, and Meteosat satellites.

The first parameter we have considered is the dimension and
the spacing of the subregions S in which the entire region of
interest is divided. This has been accomplished by subdividing
the entire region of interest into smaller partially overlapping,
subregions. Starting from o« = 15° and # = 5°, an optimal
value, intended as the value that compromises at best retrieval
accuracy and computation efficiency, it has been found o =

9° and 0 = 3°, where « is the subregion dimension, while (3
represents the spacing.

As second step, we have considered the maximum temporal
look-back within the background process. We found that a
look-back of 24 h can be considered a good compromise
between the need of accumulating a consistent number of
pixels to derive the R-T, relationship and the need to have
data as close as possible in time to the storm evolution on that
subregion.

A suitable discretization of the histograms to implement pdfs
has been also considered. Starting from 1 mm/h and 1.5 K, the
found optimal values have been a constant bin of 0.25 mm/h for
RR histograms and a constant bin of 1 K for 71 histograms.
Moreover, the multiplicative factor p in (38) has been set to 5,
while the number of bins to 120 so that the subregion number



MARZANO et al.: MULTIVARIATE STATISTICAL INTEGRATION OF SATELLITE IR AND MICROWAVE RADIOMETRIC MEASUREMENTS

TABLE IV
RESULTS IN TERMS OF ANALYSIS INDEXES, DEFINED IN TABLES II AND III,
AS OBTAINED FROM THE SENSITIVITY ANALYSIS OF THE MPM. THE
COMPARISON OF THE MPM INITIAL VERSION WITH THE OPTIMAL ONE
AND THE UPM IS ALSO SHOWN. IDEAL VALUES OF THE INDEXES ARE
REPORTED FOR CONVENIENCE

Analysis UPM Initial Optimized Ideal
Index _ __MPM _MPM | value
PODNR 0,96 0,97 0,98 1
PODR 0,34 0,36 0,35 1
FAR 0,63 0,59 0,56 0
cst | 023 024 0,25 1
HKI 0,34 0,38 0,45 1
ISE 0,10 0,09 0,06 0
NEB 0,08 0,07 0,06 0
FMR 0,92 0,93 0,94 1
FVR 0,91 0,91 0,93 1
FSE 0,61 0,57 0,55 0

threshold Ng; has been assumed to be 600 (effective values
between 500 and 1000 are acceptable). Starting from 99%,
we have also searched for an optimum value of no-rain pixel
threshold Pxr¢, found equal to 95% [see (39)]

As far as MPM is concerned, we have set the threshold
rain-rate Ry [see (5) and (12)] to 0.1 mm/h, while the range
of IR temperature to be spanned has been fixed between 173
and 293 K. It is worth mentioning that the results obtained
for MPM are generally slightly better than the disjoint MPM
(D-MPM) and conditional MPM (C-MPM), given in (17) and
(19), respectively. This is the reason why we show, for brevity,
only results for MPM even though D-MPM and C-MPM can
represent a valid alternative especially in terms of computation
efficiency.

For the VMR integration algorithm, a natural step was the in-
vestigation of the best polynomial order in (33). The choice of
a third-order polynomial (i.e., M = 3) has been assessed by
considering both the retrieval accuracy and computation perfor-
mances. By introducing the Tir standard deviation o [see (1)]
within the predictor set, a further improvement has been verified
so that the VMR prediction algorithm, given in (33), has been
extended as

M B B
R = dO + Z dlm(Ta)m + d2m/(Tmf)m + d3m/(07f)m

m=1

(41)

where dy, di,n, dom, and d3,, are the regression coefficients.
It is worth mentioning the inclusion of o7 within the MPM
method did not produce significant improvements, while
heavily affecting the computation efficiency.

A final study has been carried out on the choice of the pre-
classification techniques, illustrated in Section III-A. Again, in
order to balance accuracy and efficiency, the optimal choice has
resulted to be the simple technique, expressed by (36), after se-
lecting the surface background (land, ocean, or coast). The mean
value of the threshold ¢,; has been found to be about 45 K with
a standard deviation of 4 K.

In summary, by using the historical test dataset, the compar-
ison between the MICRA prediction algorithms with the initial
and optimized configuration parameters are shown in Table IV
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TABLE V
SAME AS FOR TABLE IV, BUT FOR THE VMR METHOD. RESULTS FOR
FIRST-ORDER OMR ARE ALSO SHOWN

Analyss | Fistorder | iiloriy | Capieonder | el
VMR VMR

PODNR 0,63 0,66 0,68 1

PODR 0,84 0,91 0,92 1
FAR 0,87 0,86 0,75 0
CSI 0,13 0,14 0,22 1
HKI -0,24 -0,21 0,14 1
ISE -0,98 -0,93 -0,70 0
NEB 0,08 0,08 0,06 0
FMR 0,91 0,92 0,94 1
FVR 0,94 0,95 0,96 1
FSE 0,55 0,47 0,45 0

Accumulated SSM/T rainfall {mm/h) on November 1-17, 1999
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Fig. 2.  Accumulated rainfall (millimeters per hour), derived from LEO-MW
radiometers, during November 1-17, 1999 (November 1999 case study).

for MPM and in Table V for VMR in terms of a variety of anal-
ysis indexes, defined in Tables II and III. For convenience, ideal
values of each index are reported. Univariate PM and first-order
polynomial OMR algorithms are also listed for comparison in
Tables IV and V, respectively. Both UPM and first-order OMR
give overall worse results than MPM and cubic-order VMR. By
substituting the default values with the optimum values, the im-
provement of MPM algorithm performances in terms of retrieval
accuracy ranges from 5% to 15% for the optimized MPM with
respect to initial MPM (with respect to UPM the improvements
are higher than 20%) without degrading their computation per-
formances. For the optimized VMR, the improvements with re-
spect to its initial configuration are even higher going from 5%
to 30% (up to 50% if compared with first-order OMR).

B. Case Studies

The first case study refers to the period November 1-17, 1999
(hereafter referred to as November 1999 case). Heavy rainfall
occurred on the Atlantic area and along the equator, as seen from
Fig. 2, where the total accumulated rainfall, as estimated from
LEO-MW sensors, is plotted. Consider an effect of possible un-
dersampling of a rainfall event due to the LEO platform obser-
vations. During this period, strong cyclonic perturbations hit the
Mediterranean area. The period from November 7-11 coincided
with the eleventh intensive operational period (IOP-11) of the
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Accumulated SSM/T rainfall (mm/h) on MAP case
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Fig. 3. Same as in Fig. 2, but for the Southern Europe zoomed area. Northern
Italy and southern Switzerland and Austria were interested by the Mesoscale
Alpine Project during the considered period.

Number of MW raining pivels on Novemhber 1-17, 1999

longitude  {Dag )

Fig. 4. Number of collocated MW-IR radiometric measurements relative to
rain pixels, available during November 1-17, 1999 (November 1999 case study).

Mesoscale Alpine Project (MAP), which was carried out in a
vast region delimited by northern Italy and southern Switzer-
land and Austria. To this aim, Fig. 3 shows a zoom of Fig. 2 on
the Southern Europe regions.

In order to apply, the combined MW-IR dataset has to be
built. Fig. 4 shows the number of collocated MW-IR raining
measurements per pixel available within the November 1999
case. Note that subregions are made by about 10° x 10° boxes
so that they can contain more than 1600 pixels.

The second case study refers to the period November 16-27,
2000 (hereafter referred to as November 2000 case). In this case,
the integration techniques have been evaluated on a global scale,
including the whole field of view of METEOSAT-5. During this
second case study, light but persistent rainfall occurred on the
Indian Ocean and on the southeast of Asia. Fig. 5 shows the
same as in Fig. 2, but for the November 2000 case, while Fig. 6
is analogous to Fig. 4.

It is worth mentioning to note that the two case studies have
shown some peculiar differences with respect to combined IR
temperature pdfs in case of rain and no-rain, mainly depending
on rain climatology. These differences can be appreciated from
Figs. 7 and 8, where the IR temperature histograms are reported
for no-rain and rain pixels, respectively, for both the November
1999 and November 2000 case studies.

For no-rain pixels, the IR temperature distributions of the two
cases are quite similar, showing a tail for 7}, less than 250 K,
which is the major cause of erroneous detection of rainfall.
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Accumulated SSM/T rainfall (mm/h) on November 16-27, 2000
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Fig.5. Same asinFig. 2, but for the period November 16-27, 2000 (November
2000 case study).

Number of MW raining pixels on November 16-27, 2000
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Fig.6. Same asin Fig. 4, but for the period November 16-27, 2000 (November
2000 case study).

When considering rain pixels in Fig. 8, the pdf appearance is
strongly different for the two cases. While the November 1999
case is characterized by a significant uniform spread for lower
and higher IR temperatures (with values down to 200 K), the T},
distribution for the November 2000 case is mainly concentrated
for T, larger than 250 K. This results seem to be an indication,
on one hand, of the presence of high convective clouds (with
top height as high as 10 km) within the November 1999 case,
on the other hand of heavy shallow clouds in the November
2000 case.

Indeed, from Figs. 2 and 4, we noted that the rainfall of
November 1999 case has large portions over land over Africa
and Southern Europe, while the November 2000 is basically
characterized by rain over the Indian ocean. As confirmation,
Figs. 9 and 10 show the IR temperature and rain-rate pdfs,
respectively, for rain pixels over ocean and over land for
November 1999 case (see Fig. 2). From a probabilistic point
of view, continental and maritime regimes seems to have a
very unique signature [38]. This result has been confirmed by
other analyses as well we carried out, even though is shows
a regional dependence. The same analysis, carried out for
the November 2000 data, seems not to be as clear as for the
November 1999 data. As discussed later, we may attribute this
different behavior to the predominance of shallow clouds over
the Indian ocean background within the November 2000 data.

The overall results in terms of previously mentioned indexes
are reported in Table VI for the November 1999 and November
2000 cases for the MPM, VMR, UPM, and MIRRA techniques.
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Fig. 8. Same as in Fig. 6, but for the rain pixels.
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Fig. 9. Histogram of IR average temperatures relative to the rain pixels for
the November 1999 case (top) over ocean and (bottom) over land. Mean IR
temperature is 249.9 K over ocean and 240.8 K over land.

1-17 Nowvember 1999

Over ocean

Qccurrence

o 2 4 B g 10 12
Surface Rainrate (mrm/h >0)

150 T T T T T T
Gver land

QOccurrence

o 2 4 B g 10 12
Surface Rainrate (mm/h >0}

Fig. 10. Same as Fig. 9, but for MW-derived rain rates (R). Mean rain rate is
1.5 mm/h over ocean and 3.8 mm/h over land.
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Histogram of IR average temperatures relative to the no-rain pixels for the November 1999 and November 2000 case studies.
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TABLE VI
RESULTS FOR THE NOVEMBER 1999 AND NOVEMBER 2000 CASES, GIVEN IN
TERMS OF ANALYSIS INDEXES, DEFINED IN TABLES II AND III, FOR THE MPM,
VMR, UPM, AND MIRRA, AVAILABLE IN THE LITERATURE

Nov. 1999 case Nov. 2000 case

Index MPM VMR UPM MIRRA| MPM VMR UPM  MIRRA
PODNR | 096 071 0,96 0,92 0,98 0,73 0,97 0,95
PODR 037 0,51 0,15 0,35 0,12 0,75 0,04 0,13
FAR 063 088 064 08 | 08 09 08 089
CsI 022 011 012 010 | 007 010 003 004
HKI 032 -0,17 033 0,12 0,11 -0,16 0,09 -0,01
ISE 0,01 -0,77 049 -0,15 0,07 -0,93 0,44 0,04
NEB 0,10 0,12 0,11 0,12 0,14 0,07 0,14 0,12
FMR 0,89 0,88 0,89 0,89 0,86 0,92 0,86 0,84
FVR 0,84 0,86 0,82 0,86 0,85 0,91 0,84 0,86
FSE 0,77 0,7 0,80 0,71 0,78 0,59 0,79 0,8

For the Southern Europe area during the MAP campaign, results
are given in Table VIIL.

From the analysis of the previous tables, a different be-
havior emerges when considering the November 1999 and
November 2000. For the November 1999 case, MPM shows a
PODNR and a FAR better than those of VMR, but at the same
time, a worse PODR. The latter is significantly better for VMR
with respect to the other techniques for the November 2000.
The PODR of MPM is low but better than UPM, while MIRRA
technique shows performances comparable to those of MPM,
apart from FAR. An interesting feature of MPM is the relatively
good values of CSI, HKI, and ISE indexes, indicating a better
capability of detecting rain pixels and a basically unbiased
behavior of the estimates.
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TABLE VII
SAME AS IN TABLE VI, BUT FOR NOVEMBER 1999, LIMITED TO THE
MAP GEOGRAPHICAL AREA OVER LAND

Index MPM VMR UPM MIRRA
PODNR 0,97 0,74 0,97 0,96
PODR 031 0,45 0,18 03
FAR 0,70 0,94 0,66 0,88
csi 0,18 0,05 0,11 0,05
HET 027 0,2 0,26 -0,30
ISE -0,04 -0,86 0,51 -0,10
NEB 0,06 0,05 0,11 0,06
FMR 0,94 0,94 0,88 0,93
FVR 0,94 0,92 0,83 0,93
FSE 0,49 0,53 0,79 0,52

If the estimation accuracy indexes are considered, the overall
better performances are those of VMR with respect to the other
techniques. The MPM method shows a slight improvement with
respect to UPM and MIRRA, showing a lower error bias (i.e.,
low NEB and FMR) for the November 1999 case. The estimate
error variance, on the contrary, is minimized when considering
the VMR approach, which results to be of particular interest for
the November 2000 where all estimation indexes are in favor to
VMR.

The latter scenario may be explained by considering some
features of the two considered cases. While the November 1999
case is highly characterized by a histogram dispersion of IR tem-
peratures and, thus, high rain-rate values (see Figs. 7 and 8),
the November 2000 case is less disperse in terms of IR tem-
peratures. This implies that, for each subregion, the VMR least
squared fit needs to follow highly nonlinear relationships.

In summary, VMR demonstrates a better capability to detect
the rain pixels with respect to MPM (i.e., high PODR). Both
proposed techniques show a very good capability to detect the
no-rain pixel, even though VMR shows a tendency to overesti-
mate the number of the rain points. This limitation of the VMR
method may be mainly related to the choice of an analytical fit-
ting model, which tend to show a bias for near-zero rain rate
values. On the other hand, MPM technique deals with numerical
histograms and the no-rain detection is limited only by choice
of the near-zero rain bin [see (5) and (12)]. With regard to the
estimate accuracy, the two techniques show comparable results
in the November1999 case, which are in turn similar to MIRRA
and UPM techniques. On the contrary, in the November 2000
case, VMR shows a better estimate accuracy with respect to the
MPM mainly as a consequence of the large difference between
the two techniques in the capability of collecting the rain pixels.

Regarding the reliability of the two MICRA algorithms from
the analyzed case studies MPM has shown to be more accurate
in following variable conditions characterized by high values
of rain rates, while the VMR, because of its structure, showed
some difficulties when the conditions change in a sudden way
or in presence of a high range of rain rates. It is worth noting
finally that VMR has showed a better computation efficiency
with respect to MPM because of the short time necessary for
the computation of the regression coefficients with respect to
the time necessary for matching the rain-rate histogram with the
IR temperatures histogram.
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V. SUMMARY AND CONCLUSION

A systematic analysis of statistical integration methods has
been carried out in order to use MW-based rain-rate estimates
to “calibrate” IR measurements. The MW-IR combined rain-
fall algorithm (MICRA) procedure is based on the collocation
of GEO-IR and LEO-MW data, accomplished on a global scale
using an ensemble of subregions, partially overlapped. Two new
techniques, named multivariate probability matching and vari-
ance-constrained multiple regression have been investigated in
terms of relative estimate accuracy, algorithm parameter sensi-
tivity, cloud classification impact, and computing efficiency. As
an application, two case studies have been discussed, in order to
demonstrate the potentiality of monitoring rainfall attenuation
and precipitation using the proposed MICRA techniques.

Focusing on the MICRA integration step as described in
Section II, we have shown that the MPM method shows better
performances for rain detection and slight lower scores for rain
estimation, while the opposite holds for the VMR technique. In
many respects, both MPM and VMR show better results than
univariate probability matching and linear regression methods.
Even though we limited our analysis to DMSP-SSM/I,
TRMM-TMI, and MeteoSat-VISSR data, the proposed tech-
niques can be easily generalized to rain-rate estimates, derived
from other spaceborne sensors and ground-based instruments,
as well as to multispectral VIS/IR channels. We note that
the MICRA statistical integration techniques can offer some
advantages with respect to artificial neural network approaches
due to their higher efficiency within the training phase, which is
essential when designing an adaptive rapid-updating procedure
on a global scale.

It is worth recalling that the emphasis of our intercomparisons
has been put not on the rain-rate estimate validation, but on the
testing and verification of MW and IR data fusion techniques
to reproduce MW-derived rain-rate fields, assumed as reference
data. This approach has highlighted the substantial aspect of a
synergetic retrieval based on sensor combination. The validation
of the product of the MICRA technique is, in its current form,
related to the accuracy of inversion step procedure where sur-
face rain rate is estimated from MW radiometric measurements.
Any improvement in the MW-based retrieval technique should
reflect into the combined algorithm approach. In this way we
have also avoided to tackle the critical problem of comparing
ground-based rain-rate measurements with satellite-based ones.

Future work will be devoted to embed these MICRA sta-
tistical techniques within current operational frameworks in
order to verify the expected improvements and validate them
on a long-term and global scale basis by comparing with
conventional ground data. Besides, the MW inversion step can
be refined by using climatologically tuned empirical algorithms
and, for some critical regions, physically based MW algorithm
able to predict the precipitation spatial structure. Indeed, further
retrieval constraints, derived from available geophysical fields
(such local wind flow and orography) and meteorological
dynamical condition (such as rain cloud advection), can help to
improve the estimate of surface rainrate (e.g., [18] and [19]).

The scenario of MW radiometers aboard a multisatellite con-
stellation raises the issue about the consistency of rain-rate prod-
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ucts derived from instruments with different specifications (e.g.,
channel frequencies, field of views, radiometric accuracies). A
simple way to apply the proposed MICRA technique could be
the choice of a “reference” radiometer whose rain products can
be used to “calibrate” all the others [41]. For instance, if TMI is
chosen as a “reference” in the tropical regions due to its char-
acteristics and revisit time, then histograms of rain rates de-
rived from other sensor such as SSM/I, AMSU, and AMSR
could be adjusted to those of TMI adopting the same probability
matching concepts illustrated here. Finally, the recent launch
of MeteoSat Second Generation constitutes a unique opportu-
nity to exploit multivariate (multispectral) approaches to satel-
lite rainfall retrieval.
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